Volume 36 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
Li Yanwei, Li Fei, Shang Xinwen, et al. Influence of thermal radiation on cathode temperature of traveling wave tubes[J]. High Power Laser and Particle Beams, 2024, 36: 103003. doi: 10.11884/HPLPB202436.240148
Citation: Li Yanwei, Li Fei, Shang Xinwen, et al. Influence of thermal radiation on cathode temperature of traveling wave tubes[J]. High Power Laser and Particle Beams, 2024, 36: 103003. doi: 10.11884/HPLPB202436.240148

Influence of thermal radiation on cathode temperature of traveling wave tubes

doi: 10.11884/HPLPB202436.240148
  • Received Date: 2024-05-08
  • Accepted Date: 2024-07-05
  • Rev Recd Date: 2024-06-17
  • Available Online: 2024-08-19
  • Publish Date: 2024-10-15
  • The working temperature of the cathode, as the electron source of traveling wave tubes (TWTs), directly impacts the performance, stability and lifespan of TWTs. Since the cathode’s temperature cannot be directly measured during TWT operation, it is primarily determined through component temperature measurement and electron gun thermal simulation. Thermal radiation is a significant heat transfer mode in the electron gun and a major factor in heat loss. Therefore, it cannot be ignored in the thermal analysis of the electron gun. The heat loss was quantitatively analyzed, the thermal simulation of cathode-thermal shielding assembly was conducted considering contact thermal resistance and heat loss, establishing a comprehensive thermal radiation boundary. The temperature measurement test data curve of the cathode-thermal shielding assembly was fitted by adjusting the surface emissivity of the parts to obtain its value in high-temperature regions of TWT electron guns. The impact of surface emissivity and heat loss on cathode temperature was analyzed, and the accuracy of obtained emissivity value was verified through a heat equilibrium test of electron gun, and then a more precise distribution cloud map of the electron gun was obtained. The research results show that the surface emissivity of cathode is 0.65 when the temperature is between 950 and 1100 ℃. Besides, the higher the surface emissivity of electron gun components, the lower the cathode temperature, and the surface emissivity of the cathode cylinder has the greatest impact on the cathode temperature; the higher the temperature, the greater the heat loss of the heater. Without considering heat loss, the simulated cathode surface temperature is 14.4−17.5 ℃ higher. The surface temperature of the cathode obtained by component temperature measurement is 42−62 ℃ higher than that of the entire tube.
  • loading
  • [1]
    姚若妍, 唐涛, 赵国庆, 等. 螺旋线行波管慢波结构设计及注波互作用模拟[J]. 强激光与粒子束, 2014, 26:063030 doi: 10.11884/HPLPB201426.063030

    Yao Ruoyan, Tang Tao, Zhao Guoqing, et al. Design of slow-wave structure and beam-wave interaction simulation for helix traveling-wave tube[J]. High Power Laser and Particle Beams, 2014, 26: 063030 doi: 10.11884/HPLPB201426.063030
    [2]
    李莹, 边兴旺, 张琳, 等. G波段行波管电子枪设计与实验[J]. 太赫兹科学与电子信息学报, 2023, 21(7):895-900

    Li Ying, Bian Xingwang, Zhang Lin, et al. Design and experiment research on electron gun of G band traveling wave tube[J]. Journal of Terahertz Science and Electronic Information Technology, 2023, 21(7): 895-900
    [3]
    廖复疆. 真空电子技术: 信息化武器装备的心脏[M]. 2版. 北京: 国防工业出版社, 2008: 181

    Liao Fujiang. Vacuum electronics: the heart of information equipment[M]. 2nd ed. Beijing: National Defense Industry Press, 2008: 181
    [4]
    姚列明, 杨中海, 肖礼. 行波管电子枪设计中的热分析[J]. 电子科技大学学报, 2005, 34(4):470-473 doi: 10.3969/j.issn.1001-0548.2005.04.011

    Yao Lieming, Yang Zhonghai, Xiao Li. Thermal analysis in the design of electronic gun[J]. Journal of University of Electronic Science and Technology of China, 2005, 34(4): 470-473 doi: 10.3969/j.issn.1001-0548.2005.04.011
    [5]
    程诚, 程道喜, 郑曙昕, 等. 新型热阴极电子枪加热结构热分析[J]. 强激光与粒子束, 2010, 22(7):1607-1609 doi: 10.3788/HPLPB20102207.1607

    Cheng Cheng, Cheng Daoxi, Zheng Shuxin, et al. Thermal analysis of heating structure for thermionic cathode electron gun[J]. High Power Laser and Particle Beams, 2010, 22(7): 1607-1609 doi: 10.3788/HPLPB20102207.1607
    [6]
    Xu S X, Hou X W, Wang Z D, et al. Thermal analysis of electron gun for W-band gyro-traveling-wave amplifier[J]. Journal Infrared and Millimeter Waves, 2018, 37(3): 275-277,283.
    [7]
    Bhat K S, Sreedevi K, Ravi M. Thermal analysis of electron gun for travelling wave tubes[J]. Applied Surface Science, 2006, 253(2): 679-682. doi: 10.1016/j.apsusc.2005.12.154
    [8]
    Sharma R K, Sinha A K, Sharma S M, et al. Thermal analysis of electron gun for a miniature helix TWT[J]. IETE Technical Review, 2000, 17(5): 269-274. doi: 10.1080/02564602.2000.11416915
    [9]
    戴景民, 王新北. 材料发射率测量技术及其应用[J]. 计量学报, 2007, 28(3):232-236

    Dai Jingmin, Wang Xinbei. Review of emissivity measurement and its applications[J]. Acta Metrologica Sinica, 2007, 28(3): 232-236
    [10]
    刘波, 郑伟, 李海洋. 材料表面发射率测量技术研究进展[J]. 红外技术, 2018, 40(8):725-732

    Liu Bo, Zheng Wei, Li Haiyang. Research and progress on material surface emissivity measurement[J]. Infrared Technology, 2018, 40(8): 725-732
    [11]
    张树养. 影响红外测温的主要因素分析研究[J]. 工业计量, 2023, 33(5):16-20

    Zhang Shuyang. Analysis and research on the main factors affecting infrared temperature measurement[J]. Industrial Metrology, 2023, 33(5): 16-20
    [12]
    于坤, 刘玉芳, 赵跃进. 光谱发射率测量标准参考材料研究进展[J]. 光谱学与光谱分析, 2012, 32(11):2911-2915

    Yu Kun, Liu Yufang, Zhao Yuejin. Review of normal spectral emissivity standard reference materials[J]. Spectroscopy and Spectral Analysis, 2012, 32(11): 2911-2915
    [13]
    陈梦朝. 高温合金红外光谱发射率特性研究[D]. 成都: 电子科技大学, 2022: 2-3

    Chen Mengchao. Research on infrared spectral emissivity characteristics of superalloys[D]. Chengdu: University of Electronic Science and Technology of China, 2022: 2-3
    [14]
    Pan Y J, Dong W, Lin H. Progress on spectral emittance measurement at temperature over 1000℃[C]//The 7th National Academic Exchange Conference on Temperature Measurement and Control. 2015: 105-113.
    [15]
    万志, 任建伟, 李宪圣, 等. 一种红外光谱发射率测量装置的研制[J]. 发光学报, 2008, 29(1):200-203

    Wan Zhi, Ren Jianwei, Li Xiansheng, et al. The development of a kind of apparatus for measuring infrared spectral emissivity[J]. Chinese Journal of Luminescence, 2008, 29(1): 200-203
    [16]
    宋芳芳, 张国兴, 何小琦, 等. 行波管阴极组件动态热耗散分析及优化设计[J]. 真空科学与技术学报, 2006, 26(2):118-122

    Song Fangfang, Zhang Guoxing, He Xiaoqi, et al. Dynamic thermal dissipation of cathode module in electron gun of traveling wave tube[J]. Chinese Journal of Vacuum Science and Technology, 2006, 26(2): 118-122
    [17]
    阴生毅, 王宇, 王欣欣. 钨粉分级及其在M型阴极上的应用[J]. 中国钨业, 2010, 25(2):31-33

    Yin Shengyi, Wang Yu, Wang Xinxin. The tungsten powder grading and its application on M-type cathodes[J]. China Tungsten Industry, 2010, 25(2): 31-33
    [18]
    Lucken J A. Some aspects of circuit power dissipation in high power CW helix traveling-wave tubes, part Ⅰ: general theory[J]. IEEE Transactions on Electron Devices, 1969, 16(9): 813-820. doi: 10.1109/T-ED.1969.16858
    [19]
    孟鸣凤, 俞世吉, 徐振英, 等. 行波管阴极热子组件结构的热分析[J]. 真空科学与技术学报, 2009, 29(5):513-516

    Meng Mingfeng, Yu Shiji, Xu Zhenying, et al. Thermal analysis of differently-structured cathode-heater assemblies in traveling wave tube[J]. Chinese Journal of Vacuum Science and Technology, 2009, 29(5): 513-516
    [20]
    景天虎. 螺旋钢筋纯螺旋段长度的计算[J]. 西部探矿工程, 2006, 18(9):217-220

    Jing Tianhu. Calculation of the pure spiral section length of spiral steel bars[J]. West-China Exploration Engineering, 2006, 18(9): 217-220
    [21]
    黄美超. 钨铼高温热电偶合金的热性质[J]. 功能材料, 1975, 18(1):73-74

    Huang Meichao. Thermal properties of tungsten rhenium high-temperature thermocouple alloy[J]. Journal of Functional Materials, 1975, 18(1): 73-74
    [22]
    张依雨, 魏义学, 孟晓君. 行波管电子枪稳态热分析仿真模型参数设置方法[J]. 真空电子技术, 2015(2):46-49

    Zhang Yiyu, Wei Yixue, Meng Xiaojun. Parameters setting method of steady-state thermal analysis model of electron gun for traveling wave tubes[J]. Vacuum Electronics, 2015(2): 46-49
    [23]
    曹鼎汉. 维恩位移定律及其应用[J]. 红外技术, 1994, 16(2):46-48

    Cao Dinghan. Wien’s displacement law and its application[J]. Infrared Technology, 1994, 16(2): 46-48
    [24]
    余其铮. 辐射换热原理[M]. 北京: 哈尔滨工业大学出版社, 2000: 34

    Yu Qizheng. Radiation heat transfer principle[M]. Harbin: Harbin Institute of Technology Press, 2000: 34
    [25]
    张宇峰. 材料发射率测量技术与应用[M]. 北京: 冶金工业出版社, 2021: 8

    Zhang Yufeng. Measurement technology and application of material emissivity[M]. Beijing: Metallurgical Industry Press, 2021: 8
    [26]
    熊磊, 曾鸣, 周波, 等. 涂层半球发射率影响因素的研究[J]. 节能技术, 2021, 39(5):426-431

    Xiong Lei, Zeng Ming, Zhou Bo, et al. Influence factors of hemispherical emissivity of coatings[J]. Energy Conservation Technology, 2021, 39(5): 426-431
    [27]
    吕正, 代彩红, 于家琳. 钨的光谱发射率测量[J]. 现代测量与实验室管理, 2004, 12(2):9-11

    Lv Zheng, Dai Caihong, Yu Jialin. Measurement of spectral emissivity of tungsten[J]. China Inspection Body & Laboratory, 2004, 12(2): 9-11
    [28]
    姚隆卿, 贺履平, 郝玉才, 等. 金属材料的高温热物理性能测试[J]. 工程热物理学报, 1984, 2(2):185-187

    Yao Longqing, He Luping, Hao Yucai, et al. A method for measuring multiple thermalphysical properties of metallic materials at high temperature[J]. Journal of Engineering Thermophysics, 1984, 2(2): 185-187
    [29]
    于坤, 石瑞涛, 张会燕, 等. 纯钨红外光谱发射率特性研究[J]. 光谱学与光谱分析, 2020, 40(1):107-112

    Yu Kun, Shi Ruitao, Zhang Huiyan, et al. Experimental investigation of infrared spectral emissivity of pure tungsten[J]. Spectroscopy and Spectral Analysis, 2020, 40(1): 107-112
    [30]
    Cagran C, Pottlacher G, Rink M, et al. Spectral emissivities and emissivity X-points of pure molybdenum and tungsten[J]. International Journal of Thermophysics, 2005, 26(4): 1001-1015. doi: 10.1007/s10765-005-6680-1
    [31]
    Seifter A, Sachsenhofer F, Pottlacher G. A fast laser polarimeter improving a microsecond pulse heating system[J]. International Journal of Thermophysics, 2002, 23(5): 1267-1280. doi: 10.1023/A:1019852506410
    [32]
    Brodu E, Balat-Pichelin M, Sans J L, et al. Evolution of the emissivity of tungsten at high temperature with and without proton bombardment[J]. Acta Materialia, 2015, 84: 305-316. doi: 10.1016/j.actamat.2014.10.050
    [33]
    葛绍岩, 那鸿悦. 热辐射性质及其测量[M]. 北京: 科学出版社, 1989: 8-9

    Ge Shaoyan, Na Hongyue. Thermal radiation properties and measurement[M]. Beijing: Science Press, 1989: 8-9
    [34]
    于志强, 邵文生, 李季, 等. M型阴极寿命特性分析[J]. 真空电子技术, 2014(6):32-35,65

    Yu Zhiqiang, Shao Wensheng, Li Ji, et al. Life characteristic analysis of M-type dispenser cathodes[J]. Vacuum Electronics, 2014(6): 32-35,65
    [35]
    柯维娜, 朱定强, 蔡国飙. 金属光谱发射率的仿真与分析[J]. 航空学报, 2010, 31(11):2139-2145

    Ke Weina, Zhu Dingqiang, Cai Guobiao. Simulation and analysis of spectral emissivity of metals[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11): 2139-2145
    [36]
    圆山重直. 传热学[M]. 王世学, 张信荣, 译. 北京: 北京大学出版社, 2011: 108

    Yuanshan C. Heat transfer[M]. Wang Shixue, Zhang Xinrong, trans. Beijing: Peking University Press, 2011: 108
    [37]
    徐艺寒. 钼的光谱发射率特性研究[D]. 郑州: 河南师范大学, 2019: 19-20

    Xu Yihan. A research on the spectral emissivity of molybdenum[D]. Zhengzhou: Henan Normal University, 2019: 19-20
    [38]
    Taylor J E. The variation with wavelength of the spectral emissivity of iron and molybdenum[J]. Journal of the Optical Society of America, 1952, 42(1): 33-36. doi: 10.1364/JOSA.42.000033
    [39]
    朱映山, Herve P, 常海萍. 金属在高温状态下复折射率的确定[J]. 工程热物理学报, 2008, 29(12):2097-2100 doi: 10.3321/j.issn:0253-231X.2008.12.032

    Zhu Yingshan, Herve P, Chang Haiping. Determination of complex refractive index of metal at high temperature[J]. Journal of Engineering Thermophysics, 2008, 29(12): 2097-2100 doi: 10.3321/j.issn:0253-231X.2008.12.032
    [40]
    Brodu E, Balat-Pichelin M, Sans J L, et al. Efficiency and behavior of textured high emissivity metallic coatings at high temperature[J]. Materials & Design, 2015, 83: 85-94.
    [41]
    Wilthan B, Cagran C, Pottlacher G, et al. Normal spectral emissivity at 684.5nm of the liquid binary system Fe-Ni[J]. Monatshefte für Chemie, 2005, 136(11): 1971-1976.
    [42]
    白银雪. 铁镍合金熔融光谱发射率特性研究[D]. 新乡: 河南师范大学, 2022: 38-39

    Bai Yinxue. Study on characteristics of melting spectral emissivity of Fe-Ni alloy[D]. Xinxiang: Henan Normal University, 2022: 38-39
    [43]
    于坤, 刘玉芳, 贾光瑞, 等. 影响钢表面红外光谱发射率的因素分析[J]. 红外技术, 2011, 33(5):289-292 doi: 10.3969/j.issn.1001-8891.2011.05.010

    Yu Kun, Liu Yufang, Jia Guangrui, et al. Analysis on factors affecting the infrared spectral emissivity of steel surface[J]. Infrared Technology, 2011, 33(5): 289-292 doi: 10.3969/j.issn.1001-8891.2011.05.010
    [44]
    卞伯绘. 辐射换热的分析与计算[M]. 北京: 清华大学出版社, 1988: 29

    Bian Baihui. Analysis and calculation of radiation heat transfer[M]. Beijing: Tsing University Press, 1988: 29
    [45]
    GB/T 34515-2017, 航天器热平衡实验方法[S]

    GB/T 34515-2017, Thermal balance test method for spacecraft[S]
    [46]
    王龙升. 高温条件下材料光谱发射率测量研究[D]. 南京: 南京理工大学, 2014: 2-8

    Wang Longsheng. Study on the measurement of material spectral emissivity at high temperature[D]. Nanjing: Nanjing University of Science & Technology, 2014: 38
    [47]
    肖斌安, 龚烈航, 曾锐. 金属红外发射率的分析和仿真研究[J]. 红外技术, 2008, 30(6):358-360

    Xiao Bin’an, Gong Liehang, Zeng Rui. Analysis and simulation of metallic infrared emissivity[J]. Infrared Technology, 2008, 30(6): 358-360
    [48]
    Haugh M J. Radiation thermometry in the aluminum industry[M]//DeWitt D P, Nutter G D. Theory and practice of radiation thermometry. New York: Wiley, 1988: 905-971.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(7)

    Article views (703) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return