Volume 36 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
Lu Zhijun, Zhou Zusheng, Xiao Ouzheng, et al. Optimization and design of high-power high-efficiency klystron output coupler[J]. High Power Laser and Particle Beams, 2024, 36: 103002. doi: 10.11884/HPLPB202436.240155
Citation: Lu Zhijun, Zhou Zusheng, Xiao Ouzheng, et al. Optimization and design of high-power high-efficiency klystron output coupler[J]. High Power Laser and Particle Beams, 2024, 36: 103002. doi: 10.11884/HPLPB202436.240155

Optimization and design of high-power high-efficiency klystron output coupler

doi: 10.11884/HPLPB202436.240155
  • Received Date: 2024-05-11
  • Accepted Date: 2024-07-22
  • Rev Recd Date: 2024-07-22
  • Available Online: 2024-08-30
  • Publish Date: 2024-10-15
  • Microwave vacuum electronic devices play a crucial role in various fields such as scientific research and industry. Particularly, the klystron has been essential in nuclear fusion research, high-energy physics experiments, and industrial radiation processing. The output coupler, a key component of the klystron, directly impacts its overall performance. However, coupler failures are among the most common issues in klystrons and various vacuum electronic devices, especially prominent in scenarios involving high continuous wave power operation. For the development of a high-efficiency tunable 650 MHz/800 kW continuous wave klystron, optimization design of the output coupler was conducted. Significant progress was achieved in the testing of the output couplers for single-beam and multi-beam tunable klystrons. In continuous wave mode, the test power of the output coupler for the single-beam tunable klystron has exceeded 690 kW. To further increase power capacity, a T-bar transition structure was employed, and the coupler was optimized to achieve a more uniform electric field distribution near the ceramic. Additionally, the rectangular waveguide window output coupler for the multi-beam tunable klystron achieved a maximum test power of 115 kW in full standing wave conditions.
  • loading
  • [1]
    Gao Jie. CEPC technical design report: accelerator[J]. Radiation Detection Technology and Methods, 2024, 8(1): 1-1105. doi: 10.1007/s41605-024-00463-y
    [2]
    Zhou Zusheng, Chen Y, Chi Yunlong, et al. Progress on CEPC 650 MHz klystron[J]. International Journal of Modern Physics A, 2021, 36: 2142011. doi: 10.1142/S0217751X21420112
    [3]
    Lu Zhijun, Fukuda S, Zhou Zusheng, et al. Design and development of radio frequency output window for circular electron–positron collider klystron[J]. Chinese Physics B, 2018, 27: 118402. doi: 10.1088/1674-1056/27/11/118402
    [4]
    Wang Shengchang, Fukuda S, Lu Zhijun, et al. Design study and modeling of multi-beam klystron for circular electron positron collider[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1026: 166208. doi: 10.1016/j.nima.2021.166208
    [5]
    Saito Y. Breakdown phenomena in rf windows[J]. AIP Conference Proceedings, 1995, 337(1): 373-382.
    [6]
    Vyas S, Shekhawat N, Maurya S, et al. Computer simulation and analysis of 350-MHz high-power coaxial RF window and T-bar transition[J]. IEEE Transactions on Plasma Science, 2012, 40(10): 2693-2698. doi: 10.1109/TPS.2012.2210056
    [7]
    Naito F, Sakai H, Yoshimoto S, et al. The input coupler for the KEKB ARES cavity[C]//Proceedings of the 1st Asian Particle Accelerator Conference. 1998: 776.
    [8]
    Huang Tongming, Pan Weimin, Ma Qiang, et al. High power input coupler development for BEPCII 500MHz superconducting cavity[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 623(3): 895-902. doi: 10.1016/j.nima.2010.08.108
    [9]
    丁耀根. 大功率速调管的技术现状和最新进展[J]. 真空电子技术, 2020(1):1-25

    Ding Yaogen. Technical status and latest progress of high power klystrons[J]. Vacuum Electronics, 2020(1): 1-25
    [10]
    Ko S K, Lee B Y, Lee K O, et al. First operating test of the 700 MHz 1 mw prototype klystron for a proton accelerator[J]. Nuclear Engineering and Technology, 2006, 38(8): 779-784.
    [11]
    Rimmer R A, Koehler G, Saleh T, et al. A high-power L-band RF window[C]//PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No. 01CH37268). 2001: 921-923.
    [12]
    Wang Shengchang, Zhou Zusheng, Lu Zhijun, et al. Development of RF windows for 650 MHz multibeam klystron[J]. Nuclear Science and Techniques, 2023, 34: 136. doi: 10.1007/s41365-023-01294-0
    [13]
    Xiao Ouzheng, Fukuda S, Zhou Zusheng, et al. Design and high-power test of 800-kW UHF klystron for CEPC[J]. Chinese Physics B, 2022, 31: 088401. doi: 10.1088/1674-1056/ac6b26
    [14]
    Lu Zhijun, Zhou Zusheng, Xiao Ouzheng, et al. Study and analysis of high-power coupler failure due to asymmetric electric field distribution[J]. Vacuum, 2024, 227: 113406. doi: 10.1016/j.vacuum.2024.113406
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (786) PDF downloads(98) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return