Volume 36 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
Jiang Junjie, Yang Fuxiang, Dang Fangchao, et al. Particle simulation study of Ku-band relativistic extended interaction klystron oscillator[J]. High Power Laser and Particle Beams, 2024, 36: 103008. doi: 10.11884/HPLPB202436.240190
Citation: Jiang Junjie, Yang Fuxiang, Dang Fangchao, et al. Particle simulation study of Ku-band relativistic extended interaction klystron oscillator[J]. High Power Laser and Particle Beams, 2024, 36: 103008. doi: 10.11884/HPLPB202436.240190

Particle simulation study of Ku-band relativistic extended interaction klystron oscillator

doi: 10.11884/HPLPB202436.240190
  • Received Date: 2024-06-06
  • Accepted Date: 2024-08-19
  • Rev Recd Date: 2024-08-19
  • Available Online: 2024-08-26
  • Publish Date: 2024-10-15
  • RF breakdown and mode competition are the main causes of power reduction and pulse shortening of klystron oscillator (RKO). This paper introduces an extended interaction extraction structure, which can effectively reduce the RF electric field of the extraction cavity and increasing the power capacity. The traditional double-gap extraction structure converts electron energy into microwave energy in an extraction cavity and shares one channel for output. However, the extended interaction extraction structure adopts a distributed extraction cavity instead of a centralized extraction cavity, which increases the output channel, thus it can effectively improve the beam-wave conversion efficiency and reduce the RF electric field of the extraction cavity. The results of particle simulation show that the output power is 2.14 GW, 2.22 GW, 2.35 GW for the traditional two-gap extraction cavity, the two-gap extraction cavity and the three-gap extended-interaction extraction cavity, respectively, when the diode voltage is 561 kV and the magnetic field strength is 0.5 T. The maximum RF electric field of the extraction cavity is 1.50 MV/cm, 1.21 MV/cm and 1.10 MV/cm, respectively. The beam-wave conversion efficiency was 35.7%, 36.9% and 39.1%, respectively. The operating frequency of the device is 12.52 GHz. In the 3D simulation, by changing the S parameter of the cathode structure and designing a new reflector, the mode competition caused by TM113 mode of the modulation cavity is effectively suppressed, which laid the foundation for subsequent experiments.
  • loading
  • [1]
    王文祥. 微波工程技术[M]. 北京: 国防工业出版社, 2009

    Wang Wenxiang. Microwave engineering technology[M]. Beijing: National Defense Industry Press, 2009
    [2]
    令钧溥. Ku波段低磁场同轴渡越时间振荡器的研究[D]. 长沙: 国防科学技术大学, 2014

    Ling Junpu. Investigation of a Ku-band coaxial transit-time oscillator with low guiding magnetic field[D]. Changsha: National University of Defense Technology, 2014
    [3]
    宋莉莉. Ka波段高功率同轴渡越时间振荡器的研究[D]. 长沙: 国防科学技术大学, 2018

    Song Lili. A Ka-band high power coaxial transit-time oscillator[D]. Changsha: National University of Defense Technology, 2018
    [4]
    Dang Fangchao, Yang Fuxiang, Ge Xingjun, et al. A Ku-band compact disk-beam relativistic klystron oscillator operating at low guiding magnetic field[J]. IEEE Access, 2021, 9: 84170-84177. doi: 10.1109/ACCESS.2021.3079517
    [5]
    Ling Junpu, Xu Weili, He Juntao, et al. Experimental research on a gigawatt-class Ku-band coaxial transit-time oscillator with low guiding magnetic field[J]. Physics of Plasmas, 2022, 29: 073105. doi: 10.1063/5.0092985
    [6]
    陈代兵, 刘庆想, 何琥, 等. X波段五腔渡越管振荡器的理论与实验研究[J]. 强激光与粒子束, 2005, 17(1):93-98

    Chen Daibing, Liu Qingxiang, He Hu, et al. Theoretical and experimental researches on the X-band five-unit transit-time tube oscillator[J]. High Power Laser and Particle Beams, 2005, 17(1): 93-98
    [7]
    Gao Xingfu, Song Lili, Zhang Haoran, et al. A novel Ka-band coaxial transit time oscillator with internal extraction[J]. Review of Scientific Instruments, 2021, 92: 094704. doi: 10.1063/5.0062144
    [8]
    Gao Xingfu, Song Lili, Wang Lei, et al. A high-power relativistic Ka-band millimeter-wave coaxial transit time oscillator with stable repetitive operation at low guiding magnetic field[J]. IEEE Transactions on Microwave Theory and Techniques, 2024, 72(3): 1529-1535. doi: 10.1109/TMTT.2023.3307762
    [9]
    Ling Junpu, He Juntao, Zhang Jiande, et al. A novel Ku-band relativistic transit-time oscillator with three-cavity extractor and distance-tunable reflector[J]. Physics of Plasmas, 2017, 24: 013103. doi: 10.1063/1.4973329
    [10]
    Ju Jinchuan, Chen Yinghao, Zhou Yunxiao, et al. A coaxial high power output cavity operating in hybrid TM01-TM02 modes for repetitive operation[J]. IEEE Electron Device Letters, 2021, 42(10): 1551-1554. doi: 10.1109/LED.2021.3108536
    [11]
    邓秉方. 低磁场V波段相对论渡越时间振荡器研究[D]. 长沙: 国防科学技术大学, 2021

    Deng Bingfang. Investigation of a V-band relativistic transit-time oscillator with low guiding magnetic field[D]. Changsha: National University of Defense Technology, 2021
    [12]
    Pasour J, Smithe D, Friedman M. The triaxial klystron[J]. AIP Conference Proceedings, 1999, 474(1): 373-385.
    [13]
    Pasour J, Smithe D, Ludeking L. X-band triaxial klystron[J]. AIP Conference Proceedings, 2003, 691(1): 141-150.
    [14]
    Xiao Renzhen, Song Zhimin, Yang Dewen, et al. Efficiency enhancement of a klystron-like relativistic backward wave oscillator with local decompression magnetic field[J]. Physics of Plasmas, 2019, 26: 013104. doi: 10.1063/1.5055582
    [15]
    令钧溥, 贺军涛, 张建德, 等. 行波提取型同轴渡越时间振荡器模拟[J]. 国防科技大学学报, 2013, 35(6):120-125 doi: 10.3969/j.issn.1001-2486.2013.06.021

    Ling Junpu, He Juntao, Zhang Jiande, et al. Numerical study of a coaxial transit-time oscillator with travelling-wave output structure[J]. Journal of National University of Defense Technology, 2013, 35(6): 120-125 doi: 10.3969/j.issn.1001-2486.2013.06.021
    [16]
    Ling Junpu, He Juntao, Zhang Jiande, et al. Suppression of the asymmetric competition mode in the relativistic Ku-band coaxial transit-time oscillator[J]. Physics of Plasmas, 2014, 21: 103108. doi: 10.1063/1.4900408
    [17]
    Song Lili, He Juntao, Ling Junpu, et al. Experimental research on Ka-band coaxial transit-time oscillator[J]. Physics of Plasmas, 2018, 25: 063107. doi: 10.1063/1.5025908
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (577) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return