Volume 36 Issue 12
Nov.  2024
Turn off MathJax
Article Contents
Shao Zhicong, Ling Xiulan, Chen Xubin, et al. Research on suppression technology for coupling damage of organic pollution and defect[J]. High Power Laser and Particle Beams, 2024, 36: 121004. doi: 10.11884/HPLPB202436.240215
Citation: Shao Zhicong, Ling Xiulan, Chen Xubin, et al. Research on suppression technology for coupling damage of organic pollution and defect[J]. High Power Laser and Particle Beams, 2024, 36: 121004. doi: 10.11884/HPLPB202436.240215

Research on suppression technology for coupling damage of organic pollution and defect

doi: 10.11884/HPLPB202436.240215
  • Received Date: 2024-06-27
  • Accepted Date: 2024-10-28
  • Rev Recd Date: 2024-10-18
  • Available Online: 2024-11-02
  • Publish Date: 2024-11-08
  • In vacuum and space environment, laser damage resistance of the optical film reduces greatly. This is mainly due to the coupling effect of organic pollution in the vacuum environment and the internal defect of the film, which results in the enhancement of the light field of film. The protective film technology is an effective measure to improve the ability of optical film to resist laser damage. Based on the finite-difference time-domain algorithm, the inhibition effect of the protective layer on the light field enhancement induced by the coupling of organic pollution droplet and defect was analyzed. The analysis result shows that the light field peak value of TiO2 film decreases with the increase of protective layer thickness. When the refractive index of the protective layer is the middle value of the organic pollution droplet refractive index and that of the film , the inhibition effect of light field enhancement is the greatest. The experimental results have verified the theoretical analysis. This study deepens the understanding of the mechanism of laser induced damage degradation of optical film in vacuum and has certain reference value for improving the laser damage resistance of optical film in vacuum environment.
  • loading
  • [1]
    凌秀兰, 赵元安, 李大伟, 等. 真空环境下光学薄膜的激光损伤[J]. 强激光与粒子束, 2010, 22(10):2322-2326 doi: 10.3788/HPLPB20102210.2322

    Ling Xiulan, Zhao Yuan’an, Li Dawei, et al. Laser-induced damage of optical films in vacuum environments[J]. High Power Laser and Particle Beams, 2010, 22(10): 2322-2326 doi: 10.3788/HPLPB20102210.2322
    [2]
    韩克旭. 连续激光对薄膜元件损伤机理的研究[D]. 长春: 长春理工大学, 2023

    Han Kexu. Research on the damage mechanism of thin film elements by continuous laser[D]. Changchun: Changchun University of Science and Technology, 2023
    [3]
    凌秀兰. 真空环境下光学薄膜的激光损伤[M]. 北京: 北京理工大学出版社, 2018

    Ling Xiulan. Laser induced damage of optical thin films in vacuum environments[M]. Beijing: Beijing Institute of Technology Press, 2018
    [4]
    凌秀兰, 王高, 刘晓凤. 真空环境下光学薄膜的本征损伤机理研究[J]. 激光与光电子学进展, 2015, 52:053101

    Ling Xiulan, Wang Gao, Liu Xiaofeng. Investigation of the intrinsic damage mechanisms for optical thin film in vacuum environments[J]. Laser & Optoelectronics Progress, 2015, 52: 053101
    [5]
    许彬, 李斌成, 高椿明, 等. 真空环境下低损耗高反射光学元件性能退化特性[J]. 激光技术, 2020, 44(6):768-772 doi: 10.7510/jgjs.issn.1001-3806.2020.06.021

    Xu Bin, Li Bincheng, Gao Chunming, et al. Performance degradation of low-loss highly-reflective mirrors under vacuum environment[J]. Laser Technology, 2020, 44(6): 768-772 doi: 10.7510/jgjs.issn.1001-3806.2020.06.021
    [6]
    陈鑫. 有机污染与缺陷耦合诱导光学薄膜的激光损伤[D]. 太原: 中北大学, 2023

    Chen Xin. Laser damage of optical thin films induced by organic contamination and defect coupling[D]. Taiyuan: North University of China, 2023
    [7]
    Chen Xin, Ling Xiulan, Liu Ji, et al. Light field intensification in optical films induced by intercoupling of defects and organic contamination[J]. Micromachines, 2022, 13: 387. doi: 10.3390/mi13030387
    [8]
    武锦辉, 凌秀兰, 刘吉, 等. 缺陷诱导光学薄膜光场增强损伤分析[J]. 红外与激光工程, 2021, 50:20210357 doi: 10.3788/IRLA20210357

    Wu Jinhui, Ling Xiulan, Liu Ji, et al. Analyses of light field enhancement damage induced by defects in optical thin films[J]. Infrared and Laser Engineering, 2021, 50: 20210357 doi: 10.3788/IRLA20210357
    [9]
    刘晓凤, 李笑, 赵元安, 等. SiO2保护膜对高反膜激光损伤特性的改善[J]. 强激光与粒子束, 2010, 22(12):2860-2864 doi: 10.3788/HPLPB20102212.2860

    Liu Xiaofeng, Li Xiao, Zhao Yuan'an, et al. Damage characteristic improvement of high reflectors by SiO2 overlayer[J]. High Power Laser and Particle Beams, 2010, 22(12): 2860-2864 doi: 10.3788/HPLPB20102212.2860
    [10]
    Ling Xiulan, Chen Xin, Liu Xiaofeng. Revisiting defect-induced light field enhancement in optical thin films[J]. Micromachines, 2022, 13: 911. doi: 10.3390/mi13060911
    [11]
    程鑫彬, 焦宏飞, 张锦龙, 等. 纳秒激光薄膜损伤机理和应用研究[J]. 光学 精密工程, 2022, 30(21):2568-2590 doi: 10.37188/OPE.20223021.2568

    Cheng Xinbin, Jiao Hongfei, Zhang Jinlong, et al. Research on damage mechanism and application of nanosecond laser coatings[J]. Optics and Precision Engineering, 2022, 30(21): 2568-2590 doi: 10.37188/OPE.20223021.2568
    [12]
    苏俊宏, 徐均琪, 汪桂霞, 等. 脉冲激光诱导光学薄膜元件损伤识别方法综述[J]. 光学与光电技术, 2023, 21(1):1-12 doi: 10.3969/j.issn.1672-3392.2023.1.gxygdjs202301001

    Su Junhong, Xu Junqi, Wang Guixia, et al. Survey of damage identification methods for optical film elements induced by pulsed lasers[J]. Optics & Optoelectronic Technology, 2023, 21(1): 1-12 doi: 10.3969/j.issn.1672-3392.2023.1.gxygdjs202301001
    [13]
    Ling Xiulan, Liu Shenghu, Liu Xiaofeng. Different material modifications in laser-induced damage of optical films in air and vacuum environments[J]. Thin Solid Films, 2020, 703: 137974. doi: 10.1016/j.tsf.2020.137974
    [14]
    Diaz R, Chambonneau M, Grua P, et al. Influence of vacuum on nanosecond laser-induced surface damage morphology in fused silica at 1064 nm[J]. Applied Surface Science, 2016, 362: 290-296. doi: 10.1016/j.apsusc.2015.11.199
    [15]
    邓小红. 1064nm/532nm激光对薄膜损伤阈值的影响研究[D]. 西安: 西安工业大学, 2022

    Deng Xiaohong. Study on the influence of 1064nm/532nm laser on the damage threshold of thin films[D]. Xi'an: Xi'an Technological University, 2022
    [16]
    Ling Xiulan, Liu Shenghu. Laser-induced thermal damage simulations of optical coatings due to intercoupling of defect and organic contamination[J]. IEEE Photonics Journal, 2018, 10: 6100707.
    [17]
    Zhang Luwei, Jia Xiaodong, Wang Yunzhe, et al. Effect of femtosecond laser polarization on the damage threshold of Ta2O5/SiO2 film[J]. Applied Sciences, 2022, 12: 1494. doi: 10.3390/app12031494
    [18]
    Wu Yuling, Xiang Xia, Yu Jingxia, et al. Review: research progress on nanosecond laser irradiation damage of optical films[J]. Nuclear Analysis, 2022, 1: 100045. doi: 10.1016/j.nucana.2022.100045
    [19]
    Liu King, Miskevich A A, Loiko V A, et al. Interference effects induced by electrodes and their influences on the distribution of light field in perovskite absorber and current matching of perovskite/silicon tandem solar cell[J]. Solar Energy, 2023, 252: 252-259. doi: 10.1016/j.solener.2023.02.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views (420) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return