Volume 36 Issue 12
Nov.  2024
Turn off MathJax
Article Contents
Tu Shaoyong, Jiang Wei, Yin Chuansheng, et al. Experimental study on the hydrodynamic instability of the decelerated inner interface in indirect-driven cylindrical implosions[J]. High Power Laser and Particle Beams, 2024, 36: 122001. doi: 10.11884/HPLPB202436.240379
Citation: Tu Shaoyong, Jiang Wei, Yin Chuansheng, et al. Experimental study on the hydrodynamic instability of the decelerated inner interface in indirect-driven cylindrical implosions[J]. High Power Laser and Particle Beams, 2024, 36: 122001. doi: 10.11884/HPLPB202436.240379

Experimental study on the hydrodynamic instability of the decelerated inner interface in indirect-driven cylindrical implosions

doi: 10.11884/HPLPB202436.240379
  • Received Date: 2024-10-08
  • Accepted Date: 2024-11-04
  • Rev Recd Date: 2024-11-15
  • Available Online: 2024-11-07
  • Publish Date: 2024-11-08
  • The investigation of hydrodynamic instability growth in convergent geometry is crucial for optimizing the design of inertial confinement fusion capsules, which aims to mitigate the growth of hydrodynamic instability and mixing. Experiments about the hydrodynamic instability of the decelerated inner interface in radiation-driven cylindrical implosions were conducted at 100 kJ laser facility. Mode coupling of perturbations and the Bell-Plesset (BP) effect unique to convergent geometry were observed. The theoretical predictions of the growth induced by the BP effect are consistent with the experimental results. Additionally, these experiments identified a second-order mode introduced by an M2 drive asymmetry. The drive asymmetry is about 11%. To mitigate the drive asymmetry, a method of extending the length of the hohlraum was proposed. Researches of the hydrodynamic instability in cylindrical geometry contribute to a better understanding of how convergent geometry affects hydrodynamic instability growth at high energy density, thereby aiding in optimizing the design of inertial confinement fusion capsules.
  • loading
  • [1]
    Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
    [2]
    Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11): 3933-4024. doi: 10.1063/1.871025
    [3]
    Rayleigh L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density[J]. Proceedings of the London Mathematical Society, 1882, s1-14(1): 170-177. doi: 10.1112/plms/s1-14.1.170
    [4]
    Taylor G I. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1950, 201(1065): 192-196.
    [5]
    Richtmyer R D. Taylor instability in shock acceleration of compressible fluids[J]. Communications on Pure and Applied Mathematics, 1960, 13(2): 297-319. doi: 10.1002/cpa.3160130207
    [6]
    Meshkov E E. Instability of the interface of two gases accelerated by a shock wave[J]. Fluid Dynamics, 1969, 4(5): 101-104.
    [7]
    Wang Lifeng, Ye Wenhua, He Xiantu, et al. Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions[J]. Science China Physics, Mechanics & Astronomy, 2017, 60: 055201.
    [8]
    Regan S P, Goncharov V N, Igumenshchev I V, et al. Demonstration of fuel hot-spot pressure in excess of 50 Gbar for direct-drive, layered deuterium-tritium implosions on OMEGA[J]. Physical Review Letters, 2016, 117: 025001. doi: 10.1103/PhysRevLett.117.025001
    [9]
    Meezan N B, Edwards M J, Hurricane O A, et al. Indirect drive ignition at the National Ignition Facility[J]. Plasma Physics and Controlled Fusion, 2017, 59: 014021. doi: 10.1088/0741-3335/59/1/014021
    [10]
    吴俊峰, 缪文勇, 王立锋, 等. 神光II装置上间接驱动烧蚀瑞利-泰勒不稳定性实验分析[J]. 强激光与粒子束, 2015, 27:032009 doi: 10.3788/HPLPB20152703.32009

    Wu Junfeng, Miao Wenyong, Wang Lifeng, et al. Experimental analysis of indirect-drive ablative Rayleigh-Taylor instability on Shenguang II[J]. High Power Laser and Particle Beams, 2015, 27: 032009 doi: 10.3788/HPLPB20152703.32009
    [11]
    王立锋, 叶文华, 陈竹, 等. 激光聚变内爆流体不稳定性基础问题研究进展[J]. 强激光与粒子束, 2021, 33:012001 doi: 10.11884/HPLPB202133.200173

    Wang Lifeng, Ye Wenhua, Chen Zhu, et al. Review of hydrodynamic instabilities in inertial confinement fusion implosions[J]. High Power Laser and Particle Beams, 2021, 33: 012001 doi: 10.11884/HPLPB202133.200173
    [12]
    旷圆圆, 卢艳. 双模瑞利-泰勒不稳定性的预热烧蚀效应研究[J]. 强激光与粒子束, 2022, 34:082203 doi: 10.11884/HPLPB202234.220133

    Kuang Yuanyuan, Lu Yan. Study on preheating ablative effects of two-mode Rayleigh-Taylor instability[J]. High Power Laser and Particle Beams, 2022, 34: 082203 doi: 10.11884/HPLPB202234.220133
    [13]
    Lindl J, Landen O, Edwards J, et al. Review of the national ignition campaign 2009-2012[J]. Physics of Plasmas, 2014, 21: 020501. doi: 10.1063/1.4865400
    [14]
    Wang Lifeng, Wu Junfeng, Guo Hongyu, et al. Weakly nonlinear Bell-Plesset effects for a uniformly converging cylinder[J]. Physics of Plasmas, 2015, 22: 082702. doi: 10.1063/1.4928088
    [15]
    Wang Lifeng, Guo Hongyu, Wu Junfeng, et al. Weakly nonlinear Rayleigh-Taylor instability of a finite-thickness fluid layer[J]. Physics of Plasmas, 2014, 21: 122710. doi: 10.1063/1.4904363
    [16]
    袁永腾, 缪文勇, 丁永坤, 等. 平面调制靶瑞利-泰勒不稳定性初步研究[J]. 强激光与粒子束, 2007, 19(5):781-784

    Yuan Yongteng, Miao Wenyong, Ding Yongkun, et al. Preliminary experimental study of Rayleigh-Taylor instability of surface perturbation target[J]. High Power Laser and Particle Beams, 2007, 19(5): 781-784
    [17]
    袁永腾, 缪文勇, 丁永坤, 等. X光背光观测烧蚀面扰动引起内界面扰动的增长[J]. 强激光与粒子束, 2007, 19(4):625-628

    Yuan Yongteng, Miao Wenyong, Ding Yongkun, et al. Observation of growth of rear surface perturbation caused by ablation surface[J]. High Power Laser and Particle Beams, 2007, 19(4): 625-628
    [18]
    缪文勇, 袁永腾, 丁永坤, 等. 神光II装置上辐射驱动瑞利-泰勒不稳定性实验[J]. 强激光与粒子束, 2015, 27:032016 doi: 10.3788/HPLPB20152703.32016

    Miao Wenyong, Yuan Yongteng, Ding Yongkun, et al. Experiments of radiation-driven Rayleigh-Taylor instability on the Shenguang-II laser facility[J]. High Power Laser and Particle Beams, 2015, 27: 032016 doi: 10.3788/HPLPB20152703.32016
    [19]
    丁永坤, 江少恩, 刘慎业, 等. 激光聚变研究中心聚变靶物理实验和诊断技术研究进展[J]. 强激光与粒子束, 2013, 25(12):3077-3081 doi: 10.3788/HPLPB20132512.3077

    Ding Yongkun, Jiang Shaoen, Liu Shenye, et al. Recent progress on physical experiment and target diagnostics in Research Center of Laser Fusion[J]. High Power Laser and Particle Beams, 2013, 25(12): 3077-3081 doi: 10.3788/HPLPB20132512.3077
    [20]
    Bell G I. Taylor instability on cylinders and spheres in the small amplitude approximation[R]. LA-1321, 1951.
    [21]
    Plesset M S, Zwick S A. The growth of vapor bubbles in superheated liquids[J]. Journal of Applied Physics, 1954, 25(4): 493-500. doi: 10.1063/1.1721668
    [22]
    Epstein R. On the bell–plesset effects: the effects of uniform compression and geometrical convergence on the classical Rayleigh–Taylor instability[J]. Physics of Plasmas, 2004, 11(11): 5114-5124. doi: 10.1063/1.1790496
    [23]
    李波, 张占文, 何智兵, 等. 激光惯性约束聚变靶靶丸制备与表征[J]. 强激光与粒子束, 2015, 27:032024 doi: 10.3788/HPLPB20152703.32024

    Li Bo, Zhang Zhanwen, He Zhibing, et al. Preparation and characterization of inertial confinement fusion capsules[J]. High Power Laser and Particle Beams, 2015, 27: 032024 doi: 10.3788/HPLPB20152703.32024
    [24]
    Mikaelian K O. Rayleigh-taylor and richtmyer-meshkov instabilities and mixing in stratified cylindrical shells[J]. Physics of Fluids, 2005, 17: 094105. doi: 10.1063/1.2046712
    [25]
    吴俊峰, 叶文华, 张维岩. 柱几何rayleigh-taylor不稳定性的数值模拟[J]. 强激光与粒子束, 2003, 15(1):64-68

    Wu Junfeng, Ye Wenhua, Zhang Weiyan. Numerical simulations of Rayleigh-Taylor instability in cylindrical geometry[J]. High Power Laser and Particle Beams, 2003, 15(1): 64-68
    [26]
    Roycroft R, Sauppe J P, Bradley P A. Double cylinder target design for study of hydrodynamic instabilities in multi-shell ICF[J]. Physics of Plasmas, 2022, 29: 032704. doi: 10.1063/5.0083190
    [27]
    李欣, 戴振生, 郑无敌. ICF点火靶定标关系与稳定性优化设计研究[J]. 强激光与粒子束, 2015, 27:032012 doi: 10.3788/HPLPB20152703.32012

    Li Xin, Dai Zhensheng, Zheng Wudi. Scaling formula of ICF ignition targets and study of targets optimized in stability performance[J]. High Power Laser and Particle Beams, 2015, 27: 032012 doi: 10.3788/HPLPB20152703.32012
    [28]
    Zheng Wanguo, Zhang Xiaomin, Wei Xiaofeng, et al. Status of the SG-III solid-state laser facility[J]. Journal of Physics: Conference Series, 2008, 112: 032009. doi: 10.1088/1742-6596/112/3/032009
    [29]
    Ramis R, Schmalz R, Meyer-Ter-Vehn J. MULTI — a computer code for one-dimensional multigroup radiation hydrodynamics[J]. Computer Physics Communications, 1988, 49(3): 475-505. doi: 10.1016/0010-4655(88)90008-2
    [30]
    Peterson J L, Casey D T, Hurricane O A, et al. Validating hydrodynamic growth in national ignition facility implosions[J]. Physics of Plasmas, 2015, 22: 056309. doi: 10.1063/1.4920952
    [31]
    Betti R, Goncharov V N, McCrory R L, et al. Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion[J]. Physics of Plasmas, 1998, 5(5): 1446-1454. doi: 10.1063/1.872802
    [32]
    薛创, 范征锋, 叶文华. 瑞利-泰勒不稳定性线性增长的密度梯度致稳[J]. 强激光与粒子束, 2009, 21(3):386-390

    Xue Chuang, Fan Zhengfeng, Ye Wenhua. Variational approach for linear growth rate of Rayleigh-Taylor instability with continuous density profile[J]. High Power Laser and Particle Beams, 2009, 21(3): 386-390
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (632) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return