Volume 36 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
Zhang Zicheng, Xia Jilu, Hu Taizhuang, et al. Review of study on conduction characteristics of vacuum switch based on cold cathode materials[J]. High Power Laser and Particle Beams, 2024, 36: 115001. doi: 10.11884/HPLPB202436.240332
Citation: Zhang Zicheng, Xia Jilu, Hu Taizhuang, et al. Review of study on conduction characteristics of vacuum switch based on cold cathode materials[J]. High Power Laser and Particle Beams, 2024, 36: 115001. doi: 10.11884/HPLPB202436.240332

Review of study on conduction characteristics of vacuum switch based on cold cathode materials

doi: 10.11884/HPLPB202436.240332
  • Received Date: 2024-09-15
  • Accepted Date: 2024-10-28
  • Rev Recd Date: 2024-10-28
  • Available Online: 2024-10-31
  • Publish Date: 2024-11-01
  • For vacuum switches used in space environments, it is possible to eliminate the sealing structures and ancillary vacuum pumping equipment required in artificial environments, effectively reducing the volume and weight. They have the inherent advantages of a vacuum environment, no need for sealing, high insulation strength, and fast recovery speed, making them highly potential for application in space environments. Firstly, it is systemically introduced the research advances of vacuum switches domestic and overseas. And it is analyzed and compared the operating characteristics of various types of vacuum switches. Especially, the emphasis is put on the summary of the conduction mechanism of self-breakdown flashover vacuum switch and trigger vacuum switch. Secondly, it is analyzed the application research of cold cathode materials. Thirdly, it is summarized the research advances on cold cathode vacuum switch in National University of Defense Technology. Finally, it is discussed the development trend of the cold cathode vacuum switch. Research results lay a solid technical foundation for the application of pulse power driving source in space environment.
  • loading
  • [1]
    Mesyats G A. Pulsed power[M]. New York: Kluwer Academic/Plenum Publishers, 2005.
    [2]
    刘锡三. 高功率脉冲技术[M]. 北京: 国防工业出版社, 2005

    Liu Xisan. High pulsed power technology[M]. Beijing: National Defense Industry Press, 2005
    [3]
    张明, 周亮, 栾小燕, 等. 面向脉冲功率技术需求的伪火花开关技术[J]. 真空电子技术, 2021(1):1-9

    Zhang Ming, Zhou Liang, Luan Xiaoyan, et al. Pseudo-spark switch technologies for pulsed power sources[J]. Vacuum Electronics, 2021(1): 1-9
    [4]
    赵征, 周亮, 栾小燕, 等. 新型小体积伪火花开关研制[J]. 强激光与粒子束, 2023, 35:035002 doi: 10.11884/HPLPB202335.220290

    Zhao Zheng, Zhou Liang, Luan Xiaoyan, et al. Development of miniature pseudo-spark switch[J]. High Power Laser and Particle Beams, 2023, 35: 035002 doi: 10.11884/HPLPB202335.220290
    [5]
    丁闻婧, 冯进军, 张明, 等. 辉光放电触发重频伪火花开关研究[J]. 强激光与粒子束, 2024, 36:055012 doi: 10.11884/HPLPB202436.240036

    Ding Wenjing, Feng Jinjun, Zhang Ming, et al. Study on glow discharge triggered repetitive frequency pseudospark switch[J]. High Power Laser and Particle Beams, 2024, 36: 055012 doi: 10.11884/HPLPB202436.240036
    [6]
    Baez A. Design considerations for high power spacecraft electrical systems[R]. E-661248, 2012.
    [7]
    Cunningham K, Carr J, Lewis B. MSFC electrical power systems for cubesats[R]. M18-7079, 2018.
    [8]
    董华军, 吴延清, 向川, 等. 真空开关关键技术及发展趋势的分析[J]. 电气应用, 2008, 27(13):10-13

    Dong Huajun, Wu Yanqing, Xiang Chuan, et al. Analysis of key technologies and development trends of vacuum switches[J]. Electrotechnical Application, 2008, 27(13): 10-13
    [9]
    夏胜国, 董曼玲, 何俊佳, 等. 场击穿式TVS时延特性的测量与分析[J]. 高电压技术, 2007, 33(9):167-170,178 doi: 10.3969/j.issn.1003-6520.2007.09.037

    Xia Shengguo, Dong Manling, He Junjia, et al. Measurement and analysis of time delay characteristics of a field-breakdown triggered vacuum switches[J]. High Voltage Engineering, 2007, 33(9): 167-170,178 doi: 10.3969/j.issn.1003-6520.2007.09.037
    [10]
    周正阳, 廖敏夫, 董华军, 等. 基于电子发射原理的场击穿型真空触发开关[J]. 电气应用, 2010, 29(17):76-80

    Zhou Zhengyang, Liao Minfu, Dong Huajun, et al. Vacuum trigger switch based on electron emission principle[J]. Electrotechnical Application, 2010, 29(17): 76-80
    [11]
    Boxman R I. Triggering mechanisms in triggered vacuum gaps[J]. IEEE Transactions on Electron Devices, 1997, 24(2): 122-128.
    [12]
    Lafferty J M. Triggered vacuum gaps[J]. Proceedings of the IEEE, 1966, 54(1): 23-32. doi: 10.1109/PROC.1966.4570
    [13]
    Kamakshaiah S, Rau R S N. Delay characteristics of a simple triggered vacuum gap[J]. Journal of Physics D: Applied Physics, 1975, 8: 1426. doi: 10.1088/0022-3727/8/12/014
    [14]
    Govinda Raju G R, Hackam R, Benson F A. Breakdown mechanisms and electrical properties of triggered vacuum gaps[J]. Journal of Applied Physics, 1976, 47(4): 1310-1317. doi: 10.1063/1.322832
    [15]
    姚学玲, 陈景亮, 孙伟. 沿面闪络真空开关触发特性的实验研究[J]. 高电压技术, 2010, 36(2):340-344

    Yao Xueling, Chen Jingliang, Sun Wei. Experimental research on triggering characteristics of surface flashover triggered vacuum switch[J]. High Voltage Engineering, 2010, 36(2): 340-344
    [16]
    Chen Y G, Dethlefsen R, Crumley R, et al. High-coulomb triggered vacuum switch[C]//Proceedings of the Ninth IEEE International Pulsed Power Conference. 1993: 938.
    [17]
    Alferov D F, Ivanov V P, Sidorov V A. High-current vacuum triggered switching devices[J]. IEEE Transactions on Magnetics, 2003, 39(1): 406-409. doi: 10.1109/TMAG.2002.807671
    [18]
    Zhou Zhengyang, Liao Minfu, Zou Jiyan, et al. Time delay of a field-breakdown triggered vacuum switch with flat electrodes[J]. Instruments and Experimental Techniques, 2011, 54(6): 803-807. doi: 10.1134/S0020441211060108
    [19]
    Zhou Zhengyang, Duan Xiongying, Liao Minfu, et al. Operational characteristics of a field-breakdown triggered vacuum switch[J]. IEEE Transactions on Magnetics, 2009, 45(1): 564-567. doi: 10.1109/TMAG.2008.2008830
    [20]
    Zhou Zhengyang, Zhao Liang, Sun Weizhen, et al. Arc development of triggered vacuum switch with multi-rod electrode system[J]. Instruments and Experimental Techniques, 2016, 59(1): 84-90. doi: 10.1134/S0020441215050152
    [21]
    王延召. 多棒极型触发真空开关的关键问题及应用研究[D]. 武汉: 华中科技大学, 2014

    Wang Yanzhao. Research on the key problems and the applications of the triggered vacuum switch with multi-rod electrode system[D]. Wuhan: Huazhong University of Science and Technology, 2014
    [22]
    Makarevich A A, Rodichkin V A. A vacuum spark gap with laser firing[J]. Instrum Exp Tech, 1973: 1716-1720.
    [23]
    Harley L M, Barnes G A. Low-jitter, high-voltage, infrared, laser-triggered, vacuum switch[C]//Proceedings of the Eighth IEEE International Conference on Pulsed Power. 1991: 900-903.
    [24]
    Sullivan D L, Kovaleski S D, Hutsel B T, et al. Study of laser target triggering for spark gap switches[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(4): 956-960. doi: 10.1109/TDEI.2009.5211839
    [25]
    王珏, 邵建设, 严萍, 等. 激光触发真空沿面闪络开关的初步实验研究[J]. 强激光与粒子束, 2007, 19(6):1027-1030

    Wang Jue, Shao Jianshe, Yan Ping, et al. Experimental study on laser triggered surface flashover switch in vacuum[J]. High Power Laser and Particle Beams, 2007, 19(6): 1027-1030
    [26]
    潘如政, 王珏, 严萍, 等. 真空中激光触发脉冲电压下绝缘材料闪络特性[J]. 强激光与粒子束, 2010, 22(3):671-674 doi: 10.3788/HPLPB20102203.0671

    Pan Ruzheng, Wang Jue, Yan Ping, et al. Laser-triggered flashover characteristics of insulations in vacuum condition under pulsed voltage[J]. High Power Laser and Particle Beams, 2010, 22(3): 671-674 doi: 10.3788/HPLPB20102203.0671
    [27]
    陈伟民. 场击穿型激光触发真空开关的设计及研究[D]. 武汉: 华中科技大学, 2013: 5-15

    Chen Weimin. The design and research of a field-breakdown laser triggered vacuum switch[D]. Wuhan: Huazhong University of Science and Technology, 2013: 5-15
    [28]
    蒋西平. 激光触发真空开关导通特性研究[D]. 大连: 大连理工大学, 2016: 5-25

    Jiang Xiping. Research on conduction characteristics of a laser triggered vacuum switch[D]. Dalian: Dalian University of Technology, 2016: 5-25
    [29]
    Smith I D. Test of a vacuum/dielectric surface flashover switch[R]. UCID-18553, 1980.
    [30]
    Zeng Bo, Su Jiancang, Cheng Jie, et al. A multi-functional high voltage experiment apparatus for vacuum surface flashover switch research[J]. Review of Scientific Instruments, 2015, 86: 043302. doi: 10.1063/1.4916988
    [31]
    Zeng Bo, Su Jiancang, Zhang Xibo, et al. Investigation into the operating characteristics of fused quartz vacuum surface flashover switch[J]. IEEE Transactions on Plasma Science, 2015, 43(6): 1999-2004. doi: 10.1109/TPS.2015.2389859
    [32]
    Krasik Y E, Dunaevsky A, Krokhmal A, et al. Emission properties of different cathodes at E≤105V/cm[J]. Journal of Applied Physics, 2001, 89(4): 2379-2399. doi: 10.1063/1.1337924
    [33]
    Garate E, Mcwilliams R D, Voss D E, et al. Novel cathode for field-emission applications[J]. Review of Scientific Instruments, 1995, 66(3): 2528-2532. doi: 10.1063/1.1146504
    [34]
    Liu Lie, Li Limin, Zhang Xiaoping, et al. Efficiency enhancement of reflex triode virtual cathode oscillator using the carbon fiber cathode[J]. IEEE Transactions on Plasma Science, 2007, 35(2): 361-368. doi: 10.1109/TPS.2007.893266
    [35]
    Liu Lie, Li Limin, Wen Jianchun, et al. Robust, easily shaped, and epoxy-free carbon-fiber-aluminum cathodes for generating high-current electron beams[J]. Review of Scientific Instruments, 2009, 80: 023303. doi: 10.1063/1.3086728
    [36]
    Li Ankun, Fan Yuwei. Preliminary experimental study of a carbon fiber array cathode[J]. Journal of Applied Physics, 2016, 120: 065105. doi: 10.1063/1.4960699
    [37]
    Bugaev S P, Litvinov E A, Mesyats G A, et al. Explosive emission of electrons[J]. Soviet Physics Uspekhi, 1975, 18: 51. doi: 10.1070/PU1975v018n01ABEH004693
    [38]
    Miller R B. Mechanism of explosive electron emission for dielectric fiber (velvet) cathodes[J]. Journal of Applied Physics, 1998, 84(7): 3880-3889. doi: 10.1063/1.368567
    [39]
    Adler R J, Kiuttu G F, Simpkins B E, et al. Improved electron emission by use of a cloth fiber cathode[J]. Review of Scientific Instruments, 1985, 56(5): 766-767. doi: 10.1063/1.1138169
    [40]
    Friedman M, Myers M, Hegeler F, et al. Emission of an intense large area electron beam from a slab of porous dielectric[J]. Journal of Applied Physics, 2004, 96(12): 7714-7722. doi: 10.1063/1.1815050
    [41]
    Krasik Y E, Gleizer J Z, Yarmolich D, et al. Characterization of the plasma on dielectric fiber(velvet) cathodes[J]. Journal of Applied Physics, 2005, 98: 093308. doi: 10.1063/1.2126788
    [42]
    夏连胜, 张篁, 杨兴林, 等. 碳纤维阴极的场致发射特性实验研究[J]. 强激光与粒子束, 2007, 19(4):685-688

    Xia Liansheng, Zhang Huang, Yang Xinglin, et al. Experimental research on field emission of carbon fibe[J]. High Power Laser and Particle Beams, 2007, 19(4): 685-688
    [43]
    夏连胜. 天鹅绒阴极强流多脉冲发射特性研究[D]. 绵阳: 中国工程物理研究院, 2005: 4-10

    Xia Liansheng. Study on high current multi-pulse emission characteristics of velvet cathode[D]. Mianyang: China Academy of Engineering Physics, 2005: 4-10
    [44]
    刘列, 李立民, 文建春, 等. 碳纤维阴极的电子发射机制[J]. 强激光与粒子束, 2005, 17(8):1205-1209

    Liu Lie, Li Limin, Wen Jianchun, et al. Electron emission mechanism of carbon fiber cathode[J]. High Power Laser and Particle Beams, 2005, 17(8): 1205-1209
    [45]
    邓潘, 张军, 葛行军, 等. 碳纤维阴极发射均匀性的实验研究[J]. 强激光与粒子束, 2005, 17(11):1721-1724

    Deng Pan, Zhang Jun, Ge Xingjun, et al. Experimental investigation on emission uniformity of carbon fiber cathode[J]. High Power Laser and Particle Beams, 2005, 17(11): 1721-1724
    [46]
    李安昆. 大面积均匀发射、低出气率、长寿命碳纤维阵列阴极及其应用研究[D]. 长沙: 国防科技大学, 2021

    Li Ankun. Research on large- area, uniform emission, low outgassing rate, and long lifetime carbon fiber array cathode and its application[D]. Changsha: National University of Defense Technology, 2021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views (624) PDF downloads(98) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return