Volume 36 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
Li Chengxiang, Chen Dan, Du Jian, et al. Operational characteristics and effect factors on the triggered vacuum switch for electromagnetic pulse welding[J]. High Power Laser and Particle Beams, 2024, 36: 115002. doi: 10.11884/HPLPB202436.240345
Citation: Li Chengxiang, Chen Dan, Du Jian, et al. Operational characteristics and effect factors on the triggered vacuum switch for electromagnetic pulse welding[J]. High Power Laser and Particle Beams, 2024, 36: 115002. doi: 10.11884/HPLPB202436.240345

Operational characteristics and effect factors on the triggered vacuum switch for electromagnetic pulse welding

doi: 10.11884/HPLPB202436.240345
  • Received Date: 2024-09-27
  • Accepted Date: 2024-10-18
  • Rev Recd Date: 2024-10-25
  • Available Online: 2024-10-28
  • Publish Date: 2024-11-01
  • Electromagnetic pulse welding (EMPW) is a key application of pulsed power technology in materials processing, where triggered vacuum switch (TVS) is frequently employed as discharge switch. Based on the specific behavior of the EMPW process, this paper presents a detailed investigation into the operational characteristics of a new domestically produced TVS, named ZKTC. The study focuses on the switch's behavior during the triggering, conducting, and initial discharging stages. The effects of circuit parameters on ZKTC's operation were analyzed through simulations. A trigger device combining a Marx circuit and a pulse transformer was developed, featuring adjustable pulse widths (0–10 μs) and adjustable voltage amplitudes (0–20 kV). Based on ZKTC, a high-current pulsed generator testing platform with a discharge energy of 27 kJ was constructed to perform experimental analyses. The results indicate that the voltage amplitude and rising edge of the trigger signal significantly influence the ZKTC triggering process. While the working voltage amplitude of the main discharge circuit impacts the directional migration rate of charged particles and the discharge current during the conducting stage, modifying the parameters of the switch discharge circuit and accelerating the voltage drop rate. This, in turn, has a significant effect on both the conducting and discharging stages.
  • loading
  • [1]
    李成祥, 王淑慧, 吴浩, 等. 脉冲参数对激活动作电位强度阈值影响的仿真研究[J]. 高电压技术, 2021, 47(4):1451-1460

    Li Chengxiang, Wang Shuhui, Wu Hao, et al. Simulation study on the effect of pulse parameters on intensity threshold for action potential activation[J]. High Voltage Engineering, 2021, 47(4): 1451-1460
    [2]
    Kovalchuk B M, Kharlov A V, Vizir V A, et al. High-voltage pulsed generator for dynamic fragmentation of rocks[J]. Review of Scientific Instruments, 2010, 81: 103506. doi: 10.1063/1.3497307
    [3]
    Psyk V, Scheffler C, Linnemann M, et al. Manufacturing of hybrid aluminum copper joints by electromagnetic pulse welding - Identification of quantitative process windows[J]. AIP Conference Proceedings, 2017, 1896: 110001.
    [4]
    Li Chengxiang, Kou Pengfei, Dai Ming, et al. Separation of lithium-ion battery cathode active materials by vaporizing the current collector with pulsed current[J]. IEEE Transactions on Plasma Science, 2024, 52(2): 374-383. doi: 10.1109/TPS.2024.3364241
    [5]
    Zhou Yan, Tan Jianwen, Yao Chenguo, et al. Finite-element simulation and experiments on plastic heating in the process of electromagnetic pulse forming[J]. IEEE Transactions on Plasma Science, 2018, 46(10): 3427-3437. doi: 10.1109/TPS.2018.2825650
    [6]
    Guo Xiaoqiang, Zheng Dongpo, Blaabjerg F. Power electronic pulse generators for water treatment application: a review[J]. IEEE Transactions on Power Electronics, 2020, 35(10): 10285-10305. doi: 10.1109/TPEL.2020.2976145
    [7]
    江伟华. 高重复频率脉冲功率技术及其应用: (4)半导体开关的特长与局限性[J]. 强激光与粒子束, 2013, 25(3):537-543 doi: 10.3788/HPLPB20132503.0537

    Jiang Weihua. Repetition rate pulsed power technology and its applications: (iv) advantage and limitation of semiconductor switches[J]. High Power Laser and Particle Beams, 2013, 25(3): 537-543 doi: 10.3788/HPLPB20132503.0537
    [8]
    王磊, 章程, 高迎慧, 等. 晶闸管串联开关及同步触发系统研制[J]. 强激光与粒子束, 2015, 27:115001 doi: 10.11884/HPLPB201527.115001

    Wang Lei, Zhang Cheng, Gao Yinghui, et al. Design of series-connected thyristor switch and synchronous triggering circuit[J]. High Power Laser and Particle Beams, 2015, 27: 115001 doi: 10.11884/HPLPB201527.115001
    [9]
    Kumar R, Sahoo S, Sarkar B, et al. Development of electromagnetic welding facility of flat plates for nuclear industry[J]. Journal of Physics: Conference Series, 2017, 823: 012039. doi: 10.1088/1742-6596/823/1/012039
    [10]
    Zhang Xin, Fan Xingming, Huang Zhichao, et al. Triggering characteristic of TVS and its application research in synthetic making test for high voltage circuit-breakers[C]//Proceedings of the 25th International Symposium on Discharges and Electrical Insulation in Vacuum. 2013.
    [11]
    廖敏夫, 董华庆, 陈占清, 等. 不同电极激光触发真空开关高频开断能力研究[J]. 高电压技术, 2020, 46(7):2578-2585

    Liao Minfu, Dong Huaqing, Chen Zhanqing, et al. Research on high-frequency interruption capacity of LTVS with different electrodes[J]. High Voltage Engineering, 2020, 46(7): 2578-2585
    [12]
    廖敏夫, 邹积岩, 段雄英, 等. 高性能真空触发开关技术的研究综述[J]. 高压电器, 2006, 42(1):51-54 doi: 10.3969/j.issn.1001-1609.2006.01.016

    Liao Minfu, Zou Jiyan, Duan Xiongying, et al. Overview on techniques of high-performance triggered vacuum switch[J]. High Voltage Apparatus, 2006, 42(1): 51-54 doi: 10.3969/j.issn.1001-1609.2006.01.016
    [13]
    Akhmetgareev M R, Alferov D F, Bunin R A, et al. Triggered vacuum switch with an axial magnetic field[J]. IEEE Transactions on Plasma Science, 2013, 41(8): 2154-2159. doi: 10.1109/TPS.2013.2239664
    [14]
    Wang Yanzhao, Dai Ling, Lin Fuchang, et al. Optimization of a triggered vacuum switch with multirod electrodes system[J]. IEEE Transactions on Plasma Science, 2014, 42(1): 162-167. doi: 10.1109/TPS.2013.2289379
    [15]
    Park W H, Kong H S, An S H, et al. Research on the characteristics of a triggered vacuum switch with a surface flashover trigger device[J]. Journal of the Korean Physical Society, 2020, 77(10): 919-923. doi: 10.3938/jkps.77.919
    [16]
    卢彪, 彭太平, 言杰, 等. 一种基于吸气电极的新型真空触发开关[J]. 强激光与粒子束, 2021, 33:055003 doi: 10.11884/HPLPB202133.210014

    Lu Biao, Peng Taiping, Yan Jie, et al. New type of triggered vacuum switch based on gas-breathing electrode[J]. High Power Laser and Particle Beams, 2021, 33: 055003 doi: 10.11884/HPLPB202133.210014
    [17]
    Wu Hao, He Zhenghao, Wang Lei, et al. Effect of the trigger circuit on delay characteristics of a triggered vacuum switch with a six-gap rod electrode system[J]. IEEE Transactions on Plasma Science, 2011, 39(1): 335-341. doi: 10.1109/TPS.2010.2052836
    [18]
    李化, 龙兆芝, 林福昌, 等. 多棒极型触发真空开关触发特性[J]. 电工技术学报, 2009, 24(11):61-67 doi: 10.3321/j.issn:1000-6753.2009.11.010

    Li Hua, Long Zhaozhi, Lin Fuchang, et al. Triggering characteristics of multi-electrode type triggered vacuum switch[J]. Transactions of China Electrotechnical Society, 2009, 24(11): 61-67 doi: 10.3321/j.issn:1000-6753.2009.11.010
    [19]
    Zhou Zhengyang, Dai Ling, Nan Jing, et al. Operational characteristics of a surface breakdown triggered vacuum switch with six gap rod electrode system[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(4): 997-1002. doi: 10.1109/TDEI.2011.5976087
    [20]
    Cai Li, Li L, Liu Yunlong, et al. Analysis of breakdown mechanism in trigatron switches[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(4): 1069-1075. doi: 10.1109/TDEI.2013.6571419
    [21]
    Kore S D, Dhanesh P, Kulkarni S V, et al. Numerical modeling of electromagnetic welding[J]. International Journal of Applied Electromagnetics and Mechanics, 2010, 32(1): 1-19. doi: 10.3233/JAE-2010-1062
    [22]
    Zhou Yan, Zhou Zehong, Yao Chenguo, et al. Fast-rise-time trigger source based on solid-state switch and pulse transformer for triggered vacuum switch[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(4): 2105-2114. doi: 10.1109/TDEI.2017.006345
    [23]
    Wang Yanzhao, Lin Fuchang, Dai Ling, et al. Research on time delay and lifetime characteristics of triggered vacuum switch with multirod system[J]. IEEE Transactions on Plasma Science, 2013, 41(5): 1307-1312. doi: 10.1109/TPS.2013.2248393
    [24]
    王昌金. 基于Marx和LTD拓扑的全固态复合模式脉冲源的研制[D]. 重庆: 重庆大学, 2018

    Wang Changjin. The development of all solid-state mixed pulse generator based on Marx and LTD topologies[D]. Chongqing: Chongqing University, 2018
    [25]
    张亚舟. 脉冲功率开关在电磁轨道炮电容储能电源中的应用与实验研究[D]. 南京: 南京理工大学, 2018

    Zhang Yazhou. The application and experiment research on pulsed power switch of capacitor-based power supply in electromagnetic railgun[D]. Nanjing: Nanjing University of Science & Technology, 2018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (640) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return