Volume 37 Issue 2
Feb.  2025
Turn off MathJax
Article Contents
Li Zi, Ma Ruiyi, Rao Junfeng, et al. Study of a miniaturized solid-state Marx generator[J]. High Power Laser and Particle Beams, 2025, 37: 025001. doi: 10.11884/HPLPB202537.240248
Citation: Li Zi, Ma Ruiyi, Rao Junfeng, et al. Study of a miniaturized solid-state Marx generator[J]. High Power Laser and Particle Beams, 2025, 37: 025001. doi: 10.11884/HPLPB202537.240248

Study of a miniaturized solid-state Marx generator

doi: 10.11884/HPLPB202537.240248
  • Received Date: 2024-08-04
  • Accepted Date: 2033-03-26
  • Rev Recd Date: 2024-11-26
  • Available Online: 2025-01-07
  • Publish Date: 2025-02-15
  • Many applications including plasma excitation and high-power microwave sources require miniaturized high-voltage pulse generators. A miniaturized Marx generator with a novel magnetic isolated drive circuit is proposed. Making the source terminals of the charging MOSFET and discharging MOSFET in adjacent stages shorted in Marx generators based on half-bridge circuits, we apply a bipolar signal to both gates of these two MOSFETs and control both their switching. Combined with magnetic isolated driver with primary windings in series, only one bipolar signal from the primary side can synchronously drive all switches in the Marx generator, which considerably reduces the number of required components in the drive circuits. A 14-level experimental prototype was built, with a total weight of only 314 g, a width of 15 cm, a length of 8 cm, and a height of 5 cm. High-voltage square wave pulses with a peak voltage of 10 kV, a repetition frequency of 10 kHz, and a pulse width ranging from 200 ns to 5 μs were obtained over a resistive load. The 500 ns, 10 kV, and 1 kHz square wave pulses generated by the prototype were used to drive the dielectric barrier discharge load, and a uniform and strong discharge was generated, indicating that the miniaturized Marx generator is suitable for driving the dielectric barrier discharge load and being used as a low-temperature plasma source.
  • loading
  • [1]
    Yang Jianhua, Zhang Zicheng, Yang Hanwu, et al. Compact intense electron-beam accelerators based on high energy density liquid pulse forming lines[J]. Matter and Radiation at Extremes, 2018, 3(6): 278-292. doi: 10.1016/j.mre.2018.07.002
    [2]
    宋法伦, 金晓, 李飞, 等. 20GW紧凑Marx型重复频率脉冲驱动源研制进展[J]. 强激光与粒子束, 2017, 29:020101 doi: 10.11884/HPLPB201729.160510

    Song Falun, Jin Xiao, Li Fei, et al. Progress on 20 GW compact repetitive Marx generator development[J]. High Power Laser and Particle Beams, 2017, 29: 020101 doi: 10.11884/HPLPB201729.160510
    [3]
    韩若愚, 李柳霞, 钱盾, 等. 液体中金属丝电爆炸的研究现状与展望[J]. 高电压技术, 2021, 47(3):766-777

    Han Ruoyu, Li Liuxia, Qian Dun, et al. Exploding metal wires in liquids: current situation and prospects[J]. High Voltage Engineering, 2021, 47(3): 766-777
    [4]
    吴晓, 米彦, 郑伟, 等. 脉冲电场对细胞膜电穿孔面积的影响研究[J]. 电工技术学报, 2023, 38(14):3779-3788

    Wu Xiao, Mi Yan, Zheng Wei, et al. Effect of pulsed electric field on electroporation area of cell membrane[J]. Transactions of China Electrotechnical Society, 2023, 38(14): 3779-3788
    [5]
    乔乾森, 巴德玛, 李长青, 等. 低温等离子体表面处理技术研究[J]. 材料保护, 2022, 55(12):55-60

    Qiao Qiansen, Ba Dema, Li Changqing, et al. Research on low-temperature plasma surface treatment technology[J]. Materials Protection, 2022, 55(12): 55-60
    [6]
    Qi Liqiang, Chen Qihao, Zhao Weiyuan, et al. Removal of toluene using an integrative DBD/Absorption reactor: Feasibility and mechanism[J]. Journal of Environmental Chemical Engineering, 2023, 11: 110387. doi: 10.1016/j.jece.2023.110387
    [7]
    江伟华, 德地明, 须贝太一, 等. 小型脉冲功率发生器的电路方法与实践[J]. 强激光与粒子束, 2024, 36:055001 doi: 10.11884/HPLPB202436.240053

    Jiang Weihua, Akira T, Taichi S, et al. Compact pulsed-power circuit methods and practice[J]. High Power Laser and Particle Beams, 2024, 36: 055001 doi: 10.11884/HPLPB202436.240053
    [8]
    Burkin E Y, Sviridov V V, Chumerin P Y. A compact pulse magnetron microwave generator based on a solid-state switch[J]. Instruments and Experimental Techniques, 2023, 66(1): 60-66. doi: 10.1134/S0020441223010086
    [9]
    Zhang Chengbo, Liu Kefu, Qiu Jian. Array microhollow cathode (MHC) discharges with pretrigger device triggered by nanosecond pulses at atmospheric pressure[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 1961-1970.
    [10]
    饶俊峰, 李成建, 李孜, 等. 全固态高重频高压脉冲电源[J]. 强激光与粒子束, 2019, 31:035001 doi: 10.11884/HPLPB201931.190005

    Rao Junfeng, Li Chengjian, Li Zi, et al. All solid state high-frequency and high voltage pulsed power supply[J]. High Power Laser and Particle Beams, 2019, 31: 035001 doi: 10.11884/HPLPB201931.190005
    [11]
    饶俊峰, 洪凌锋, 郭龙跃, 等. 多路Marx并联高压脉冲电源研究[J]. 强激光与粒子束, 2020, 32:055001 doi: 10.11884/HPLPB202032.190472

    Rao Junfeng, Hong Lingfeng, Guo Longyue, et al. Investigation of high voltage pulse generators with Marx generators in parallel[J]. High Power Laser and Particle Beams, 2020, 32: 055001 doi: 10.11884/HPLPB202032.190472
    [12]
    饶俊峰, 汪文超, 石富坤, 等. 自触发驱动的双极性脉冲叠加器[J]. 高电压技术, 2023, 49(8):3258-3267

    Rao Junfeng, Wang Wenchao, Shi Fukun, et al. A self-triggering bipolar pulse adder[J]. High Voltage Engineering, 2023, 49(8): 3258-3267
    [13]
    Rao Junfeng, Zhang Rui, Shi Fukun, et al. A high-voltage solid-state Marx generator with adjustable pulse edges[J]. High Voltage, 2023, 8(5): 878-888. doi: 10.1049/hve2.12311
    [14]
    Matsukawa R, Yamaguchi T, Matsuda M, et al. Development of a compact nanosecond pulse generator[C]//IEEE Pulsed Power & Plasma Science (PPPS). 2019: 1-4.
    [15]
    Bae J S, Kim T H, Son S H, et al. Compact solid-state Marx modulator with fast switching for nanosecond pulse[J]. IEEE Transactions on Power Electronics, 2022, 37(8): 9406-9414. doi: 10.1109/TPEL.2022.3156586
    [16]
    庄龙宇, 杨均翔, 须貝太一, 等. 紧凑型全固态高重复频率LC-Marx脉冲发生器[J]. 强激光与粒子束, 2021, 33:065003 doi: 10.11884/HPLPB202133.210114

    Zhuang Longyu, Yang Junxiang, Taichi S, et al. Compact all-solid-state high frequency LC-Marx generator based on magnetic switch[J]. High Power Laser and Particle Beams, 2021, 33: 065003 doi: 10.11884/HPLPB202133.210114
    [17]
    姚皓伟, 李孜, 王永刚, 等. 一种紧凑型固态Marx发生器的研究[J]. 强激光与粒子束, 2024, 36:025006 doi: 10.11884/HPLPB202436.230148

    Yao Haowei, Li Zi, Wang Yonggang, et al. Investigation of a compact solid-state Marx generator[J]. High Power Laser and Particle Beams, 2024, 36: 025006 doi: 10.11884/HPLPB202436.230148
    [18]
    文韬, 向念文, 章程, 等. 高压放电等离子体研究现状及发展趋势[J]. 高电压技术, 2023, 49(8):3226-3239

    Wen Tao, Xiang Nianwen, Zhang Cheng, et al. Research status and development trend of high voltage discharge plasma[J]. High Voltage Engineering, 2023, 49(8): 3226-3239
    [19]
    李梦遥, 王歆昀, 赵昱雷, 等. 纳秒脉冲电压幅值和上升/下降沿时间对大气压氮气DBD均匀性的影响[J]. 高电压技术, 2024, 50(2):852-860

    Li Mengyao, Wang Xinyun, Zhao Yulei, et al. Influence of nanosecond pulse voltage amplitude and rising/falling edge time on the uniformity of atmospheric pressure N2 DBD[J]. High Voltage Engineering, 2024, 50(2): 852-860
    [20]
    庄越, 刘峰, 储海靖, 等. 交流和纳秒脉冲Ar/H2O介质阻挡放电聚丙烯材料表面亲水改性对比研究[J]. 强激光与粒子束, 2021, 33:0650 doi: 10.11884/HPLPB202133.210051

    Zhuang Yue, Liu Feng, Chu Haijing, et al. Comparison study of PP hydrophilic surface modification by Ar/H2O dielectric barrier discharge excited by AC and nanosecond pulse voltage[J]. High Power Laser and Particle Beams, 2021, 33: 0650 doi: 10.11884/HPLPB202133.210051
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article views (722) PDF downloads(117) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return