Volume 37 Issue 1
Dec.  2025
Turn off MathJax
Article Contents
Zhang Yimo, Yang Biao, Peng Xingyu, et al. In-situ calibration of the efficiency of a yttrium activation detection system by the accelerator-based DD fusion neutron source[J]. High Power Laser and Particle Beams, 2025, 37: 016003. doi: 10.11884/HPLPB202537.240265
Citation: Zhang Yimo, Yang Biao, Peng Xingyu, et al. In-situ calibration of the efficiency of a yttrium activation detection system by the accelerator-based DD fusion neutron source[J]. High Power Laser and Particle Beams, 2025, 37: 016003. doi: 10.11884/HPLPB202537.240265

In-situ calibration of the efficiency of a yttrium activation detection system by the accelerator-based DD fusion neutron source

doi: 10.11884/HPLPB202537.240265
  • Received Date: 2024-08-15
  • Accepted Date: 2024-11-09
  • Rev Recd Date: 2024-11-09
  • Available Online: 2024-11-21
  • Publish Date: 2025-01-15
  • On the pulsed fusion sources such as laser ICF device, Z pinch facility and dense plasma focus device, the neutron activation method are widely applied, which can measure the neutron flux and diagnose the neutron yield from the source. Based on the inorganic scintillation detector, the 909 keV monoenergetic gammas, which are emitted from decay of the activated yttrium nuclei after the inelastic scattering on neutrons, can be measured, and the flux of the DD fusion neutrons can be diagnosed. In this work, an activation detection system using yttrium is developed, in which the LaBr3:Ce scintillator detector is chosen as the gamma sensitive material. The accumulation process of yttrium activation products under continuous irradiation has been physically analyzed, with respect to their half-life of only 15.663 s. An experimental method of calibrating the incident neutron detection efficiency by accelerator-based DD neutron source is thus established. In the experiments, the gamma detector is served as both neutron flux rate monitor and activation gamma measurements. The variation of radiation activity of the yttrium target with the neutron flux rate are simulated. Therefore, the in-situ calibration of the detection efficiency of this yttrium activation system for incident neutrons is achieved, with an accuracy of about 3.8%.
  • loading
  • [1]
    Frenje J A. Nuclear diagnostics for Inertial Confinement Fusion (ICF) plasmas[J]. Plasma Physics and Controlled Fusion, 2020, 62: 023001. doi: 10.1088/1361-6587/ab5137
    [2]
    Wang Feng, Jiang Shaoen, Ding Yongkun, et al. Recent diagnostic developments at the 100 kJ-level laser facility in China[J]. Matter and Radiation at Extremes, 2020, 5: 035201. doi: 10.1063/1.5129726
    [3]
    Bionta R M, Grim G P, Hahn K D, et al. Real-time nuclear activation detectors for measuring neutron angular distributions at the National Ignition Facility[J]. Review of Scientific Instruments, 2021, 92: 043527. doi: 10.1063/5.0042869
    [4]
    Cikhardt J, Klir D, Shishlov A V, et al. Neutron fluence distribution in experiments with 3 MA deuterium gas-puff z-pinch[J]. Physics of Plasmas, 2020, 27: 072705. doi: 10.1063/5.0008108
    [5]
    Hahn K D, Chandler G A, Ruiz C L, et al. Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator[J]. Journal of Physics: Conference Series, 2016, 717: 012020.
    [6]
    Springham S V, Verma R, Zaw M S N, et al. Plasma focus neutron energy and anisotropy measurements using zirconium–beryllium pair activation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 988: 164830. doi: 10.1016/j.nima.2020.164830
    [7]
    Cooper G W, Ruiz C L. NIF total neutron yield diagnostic[J]. Review of Scientific Instruments, 2001, 72(1): 814-817.
    [8]
    Hahn K D, Cooper G W, Ruiz C L, et al. Fusion-neutron-yield, activation measurements at the Z accelerator: design, analysis, and sensitivity[J]. Review of Scientific Instruments, 2014, 85: 043507. doi: 10.1063/1.4870779
    [9]
    Jednorog S, Laszynska E, Batistoni P, et al. Activation measurements in support of the 14 MeV neutron calibration of JET neutron monitors[J]. Fusion Engineering and Design, 2017, 125: 50-56. doi: 10.1016/j.fusengdes.2017.10.024
    [10]
    Cheon M S, Kim C S, Cho S, et al. Investigation of the capsule detection method at the irradiation end of the ITER neutron activation system[J]. Journal of the Korean Physical Society, 2021, 78(7): 574-579. doi: 10.1007/s40042-021-00083-5
    [11]
    宋仔峰, 陈家斌, 唐琦, 等. 氘氘中子产额铟活化诊断方法[J]. 强激光与粒子束, 2012, 24(5):1165-1168 doi: 10.3788/HPLPB20122405.1165

    Song Zifeng, Chen Jiabin, Tang Qi, et al. DD neutron yield diagnosis by indium activation[J]. High Power Laser and Particle Beams, 2012, 24(5): 1165-1168 doi: 10.3788/HPLPB20122405.1165
    [12]
    Li Kai, Hu Liqun, Zhong Guoqiang, et al. Development of neutron activation system on EAST[J]. Review of Scientific Instruments, 2020, 91: 013503.
    [13]
    Ruiz C L, Styron J D, Fehl D L, et al. Novel beryllium-scintillator, neutron-fluence detector for magnetized liner inertial fusion experiments[J]. Physical Review Accelerators and Beams, 2019, 22: 042901. doi: 10.1103/PhysRevAccelBeams.22.042901
    [14]
    Roshan M V, Springham S V, Rawat R S, et al. Absolute measurements of fast neutrons using yttrium[J]. Review of Scientific Instruments, 2010, 81: 083506. doi: 10.1063/1.3478020
    [15]
    Jednorog S, Szydlowski A, Bienkowska B, et al. The application of selected radionuclides for monitoring of the D–D reactions produced by dense plasma-focus device[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014, 301(1): 23-31. doi: 10.1007/s10967-014-3131-0
    [16]
    Song Zifeng, Chen Jiabin, Liu Zhongjie, et al. The calibration of the DD neutron indium activation diagnostic[J]. Plasma Science and Technology, 2015, 17(4): 337-339. doi: 10.1088/1009-0630/17/4/14
    [17]
    Li Kai, Hu Liqun, Zhong Guoqiang, et al. Calibration of the gamma-ray measurement procedure in the EAST neutron activation system[J]. Fusion Engineering and Design, 2019, 148: 111278.
    [18]
    Jednorog S, Laszynska E, Bienkowska B, et al. A new concept of fusion neutron monitoring for PF-1000 device[J]. Nukleonika, 2017, 62(1): 17-22. doi: 10.1515/nuka-2017-0003
    [19]
    李凯. 基于铟硅活化法的EAST聚变中子产额诊断研究[D]. 合肥: 中国科学技术大学, 2020: 25-28

    Li Kai. Research of EAST fusion neutron yield diagnostic based on indium and silicon activation method[D]. Hefei: University of Science and Technology of China, 2020: 25-28
    [20]
    朱通华, 刘荣, 蒋励, 等. D-D中子源产额的大角度伴随质子监测技术研究[J]. 核电子学与探测技术, 2007, 27(1):141-144,166 doi: 10.3969/j.issn.0258-0934.2007.01.038

    Zhu Tonghua, Liu Rong, Jiang Li, et al. The associated proton monitoring technique study of D-D source neutron yields at the large angle[J]. Nuclear Electronics & Detection Technology, 2007, 27(1): 141-144,166 doi: 10.3969/j.issn.0258-0934.2007.01.038
    [21]
    Cazzaniga C, Nocente M, Tardocchi M, et al. Response of LaBr3(Ce) scintillators to 2.5 MeV fusion neutrons[J]. Review of Scientific Instruments, 2013, 84: 123505. doi: 10.1063/1.4847056
    [22]
    Xi Hao, Liang Chuan, Zhang F Q, et al. A pulse current generator for dense plasma focus[J]. Journal of Instrumentation, 2021, 16: P12021. doi: 10.1088/1748-0221/16/12/P12021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views (818) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return