| Citation: | Huang Chengjin, Lin Jianhui, Zhang Hongping, et al. Particle simulation and control for beam of ionic liquid ion source[J]. High Power Laser and Particle Beams, 2025, 37: 019001. doi: 10.11884/HPLPB202537.240373 |
| [1] |
Gamero-Castaño M, Hruby V. Electrospray as a source of nanoparticles for efficient colloid thrusters[J]. Journal of Propulsion and Power, 2001, 17(5): 977-987. doi: 10.2514/2.5858
|
| [2] |
Romero-Sanz I, Bocanegra R, de La Mora J F, et al. Source of heavy molecular ions based on Taylor cones of ionic liquids operating in the pure ion evaporation regime[J]. Journal of Applied Physics, 2003, 94(5): 3599-3605. doi: 10.1063/1.1598281
|
| [3] |
Höflich K, Hobler G, Allen F I, et al. Roadmap for focused ion beam technologies[J]. Applied Physics Reviews, 2023, 10: 041311. doi: 10.1063/5.0162597
|
| [4] |
Lozano P C. Design and microstructuring of materials to boost spacecraft ion propulsion[J]. Nature Reviews Materials, 2024, 9(11): 757-758. doi: 10.1038/s41578-024-00664-3
|
| [5] |
Huang Chengjin, Li Jianling, Li Mu. Experimental characterization of the electrospray propulsive performance for ionic liquid propellants [EMIm][DCA] and [BMIm][DCA][J]. Fuel, 2023, 336: 126822.
|
| [6] |
Huang Chengjin, Li Jianling, Li Mu. Performance measurement and evaluation of an ionic liquid electrospray thruster[J]. Chinese Journal of Aeronautics, 2023, 36(3): 1-15. doi: 10.1016/j.cja.2021.10.030
|
| [7] |
Huang Chengjin, Li Jianling, Li Mu, et al. Emission performance of ionic liquid electrospray thruster for micropropulsion[J]. Journal of Propulsion and Power, 2022, 38(2): 212-220. doi: 10.2514/1.B37878
|
| [8] |
Huang Chengjin, Li Jianling, Li Mu, et al. Experimental investigation on current modes of ionic liquid electrospray from a coned porous emitter[J]. Acta Astronautica, 2021, 183: 286-299. doi: 10.1016/j.actaastro.2021.03.014
|
| [9] |
Chen Chong, Chen Maolin, Fan Wei, et al. Effects of non-uniform operation of emission sites on characteristics of a porous electrospray thruster[J]. Acta Astronautica, 2021, 178: 192-202. doi: 10.1016/j.actaastro.2020.09.002
|
| [10] |
Liu Xinyu, Kang Xiaoming, Deng Hanwen, et al. Energy properties and spatial plume profile of ionic liquid ion sources based on an array of porous metal strips[J]. Plasma Science and Technology, 2021, 23: 125502. doi: 10.1088/2058-6272/ac23bd
|
| [11] |
Guo Yuntao, Sun Wei, Sun Zhenning, et al. Direct thrust test and asymmetric performance of porous ionic liquid electrospray thruster[J]. Chinese Journal of Aeronautics, 2023, 36(4): 120-133. doi: 10.1016/j.cja.2022.09.007
|
| [12] |
Yang Cheng, Lu Jiawei, Wu Xiangbei, et al. Axial emission characteristics of an ionic liquid electrospray thruster with a circular emitter[J]. Chinese Journal of Aeronautics, 2025, 38: 103207. doi: 10.1016/j.cja.2024.08.038
|
| [13] |
MacArthur J, Colicci V, Lozano P. Monodisperse porous emitter materials for ion electrospray propulsion[J]. Journal of Propulsion and Power, 2024, 40(6): 859-868. doi: 10.2514/1.B39375
|
| [14] |
吕建钦. 带电粒子束光学[M]. 北京: 高等教育出版社, 2004
Lv Jianqin. Optics of charged particle beams[M]. Beijing: Higher Education Press, 2004
|
| [15] |
Collins A L, Wright P L, Uchizono N M, et al. High angle mass flux of an electrospray plume[J]. Journal of Electric Propulsion, 2022, 1(1): 32. doi: 10.1007/s44205-022-00031-w
|
| [16] |
孙安邦, 毛根旺, 陈茂林, 等. 离子推力器羽流特性的粒子模拟[J]. 强激光与粒子束, 2010, 22(2):401-405 doi: 10.3788/HPLPB20102202.0401
Sun Anbang, Mao Genwang, Chen Maolin, et al. Particle simulation of ion thruster plume characteristics[J]. High Power Laser and Particle Beams, 2010, 22(2): 401-405 doi: 10.3788/HPLPB20102202.0401
|
| [17] |
Zhang Baiyi, Cai Guobiao, He Bijiao, et al. Plume neutralization of an ionic liquid electrospray thruster: better insights from particle-in-cell modelling[J]. Plasma Sources Science and Technology, 2021, 30: 125009. doi: 10.1088/1361-6595/ac3e7f
|
| [18] |
Asher J S, Wang J. Three-dimensional particle-in-cell simulations of bipolar ionic electrospray thruster plume[J]. Journal of Propulsion and Power, 2022, 38(4): 573-580. doi: 10.2514/1.B38610
|
| [19] |
Du Zening, Wu Zhiwen, Li Jin, et al. Study on the plume self-neutralization of ionic liquid electrospray thruster based on median potential[J]. Plasma Sources Science and Technology, 2024, 33: 055016. doi: 10.1088/1361-6595/ad4ac3
|
| [20] |
Gallud X, Lozano P C. The emission properties, structure and stability of ionic liquid menisci undergoing electrically assisted ion evaporation[J]. Journal of Fluid Mechanics, 2022, 933: A43. doi: 10.1017/jfm.2021.988
|
| [21] |
Romero-Sanz I, de La Mora J F. Energy distribution and spatial structure of electrosprays of ionic liquids in vacuo[J]. Journal of Applied Physics, 2004, 95(4): 2123-2129. doi: 10.1063/1.1639947
|
| [22] |
Lund S M, Kikuchi T, Davidson R C. Generation of initial kinetic distributions for simulation of long-pulse charged particle beams with high space-charge intensity[J]. Physical Review Special Topics - Accelerators and Beams, 2009, 12: 114801. doi: 10.1103/PhysRevSTAB.12.114801
|
| [23] |
Humphries S Jr. Charged particle beams[M]. New York: Wiley, 1990.
|
| [24] |
Lozano P, Martínez-Sánchez M. Ionic liquid ion sources: characterization of externally wetted emitters[J]. Journal of Colloid and Interface Science, 2005, 282(2): 415-421. doi: 10.1016/j.jcis.2004.08.132
|