Volume 37 Issue 1
Dec.  2025
Turn off MathJax
Article Contents
Huang Chengjin, Lin Jianhui, Zhang Hongping, et al. Particle simulation and control for beam of ionic liquid ion source[J]. High Power Laser and Particle Beams, 2025, 37: 019001. doi: 10.11884/HPLPB202537.240373
Citation: Huang Chengjin, Lin Jianhui, Zhang Hongping, et al. Particle simulation and control for beam of ionic liquid ion source[J]. High Power Laser and Particle Beams, 2025, 37: 019001. doi: 10.11884/HPLPB202537.240373

Particle simulation and control for beam of ionic liquid ion source

doi: 10.11884/HPLPB202537.240373
  • Received Date: 2024-10-23
  • Accepted Date: 2024-12-06
  • Rev Recd Date: 2024-12-06
  • Available Online: 2024-12-18
  • Publish Date: 2025-12-13
  • Ionic liquid ion sources have the capability of generating diverse heavy molecular ions, and their applications have been investigated in the field of ion thrusters. This study aims to determine the quality parameters of ionic liquid ion beams and establish methods for their control. Firstly, the beam acceleration process in an ionic liquid ion source was simulated using Particle-in-Cell (PIC) simulation methods, and the effects of the beam current, acceleration voltage, and emitter-extraction gap on the beam emittance and Twiss parameters were investigated. The results indicate that the normalized emittance decreases with a reduction in the beam current and emitter-extraction gap, as well as with an increase in the acceleration voltage. The kinetic energy broadens during the acceleration process. The acceleration efficiency is not obviously affected by the beam current or acceleration voltage. However, it increases with the expansion of the emitter-extraction gap. Secondly, the control of a centimeter-scale beam was simulated by utilizing the beam parameters derived from the simulation of the acceleration process. The results demonstrate that the divergence, velocity distribution, and specific impulse can be controlled by a set of three-electrode electrostatic lenses without imposing additional demands on the power source on the ionic liquid electric thruster.
  • loading
  • [1]
    Gamero-Castaño M, Hruby V. Electrospray as a source of nanoparticles for efficient colloid thrusters[J]. Journal of Propulsion and Power, 2001, 17(5): 977-987. doi: 10.2514/2.5858
    [2]
    Romero-Sanz I, Bocanegra R, de La Mora J F, et al. Source of heavy molecular ions based on Taylor cones of ionic liquids operating in the pure ion evaporation regime[J]. Journal of Applied Physics, 2003, 94(5): 3599-3605. doi: 10.1063/1.1598281
    [3]
    Höflich K, Hobler G, Allen F I, et al. Roadmap for focused ion beam technologies[J]. Applied Physics Reviews, 2023, 10: 041311. doi: 10.1063/5.0162597
    [4]
    Lozano P C. Design and microstructuring of materials to boost spacecraft ion propulsion[J]. Nature Reviews Materials, 2024, 9(11): 757-758. doi: 10.1038/s41578-024-00664-3
    [5]
    Huang Chengjin, Li Jianling, Li Mu. Experimental characterization of the electrospray propulsive performance for ionic liquid propellants [EMIm][DCA] and [BMIm][DCA][J]. Fuel, 2023, 336: 126822.
    [6]
    Huang Chengjin, Li Jianling, Li Mu. Performance measurement and evaluation of an ionic liquid electrospray thruster[J]. Chinese Journal of Aeronautics, 2023, 36(3): 1-15. doi: 10.1016/j.cja.2021.10.030
    [7]
    Huang Chengjin, Li Jianling, Li Mu, et al. Emission performance of ionic liquid electrospray thruster for micropropulsion[J]. Journal of Propulsion and Power, 2022, 38(2): 212-220. doi: 10.2514/1.B37878
    [8]
    Huang Chengjin, Li Jianling, Li Mu, et al. Experimental investigation on current modes of ionic liquid electrospray from a coned porous emitter[J]. Acta Astronautica, 2021, 183: 286-299. doi: 10.1016/j.actaastro.2021.03.014
    [9]
    Chen Chong, Chen Maolin, Fan Wei, et al. Effects of non-uniform operation of emission sites on characteristics of a porous electrospray thruster[J]. Acta Astronautica, 2021, 178: 192-202. doi: 10.1016/j.actaastro.2020.09.002
    [10]
    Liu Xinyu, Kang Xiaoming, Deng Hanwen, et al. Energy properties and spatial plume profile of ionic liquid ion sources based on an array of porous metal strips[J]. Plasma Science and Technology, 2021, 23: 125502. doi: 10.1088/2058-6272/ac23bd
    [11]
    Guo Yuntao, Sun Wei, Sun Zhenning, et al. Direct thrust test and asymmetric performance of porous ionic liquid electrospray thruster[J]. Chinese Journal of Aeronautics, 2023, 36(4): 120-133. doi: 10.1016/j.cja.2022.09.007
    [12]
    Yang Cheng, Lu Jiawei, Wu Xiangbei, et al. Axial emission characteristics of an ionic liquid electrospray thruster with a circular emitter[J]. Chinese Journal of Aeronautics, 2025, 38: 103207. doi: 10.1016/j.cja.2024.08.038
    [13]
    MacArthur J, Colicci V, Lozano P. Monodisperse porous emitter materials for ion electrospray propulsion[J]. Journal of Propulsion and Power, 2024, 40(6): 859-868. doi: 10.2514/1.B39375
    [14]
    吕建钦. 带电粒子束光学[M]. 北京: 高等教育出版社, 2004

    Lv Jianqin. Optics of charged particle beams[M]. Beijing: Higher Education Press, 2004
    [15]
    Collins A L, Wright P L, Uchizono N M, et al. High angle mass flux of an electrospray plume[J]. Journal of Electric Propulsion, 2022, 1(1): 32. doi: 10.1007/s44205-022-00031-w
    [16]
    孙安邦, 毛根旺, 陈茂林, 等. 离子推力器羽流特性的粒子模拟[J]. 强激光与粒子束, 2010, 22(2):401-405 doi: 10.3788/HPLPB20102202.0401

    Sun Anbang, Mao Genwang, Chen Maolin, et al. Particle simulation of ion thruster plume characteristics[J]. High Power Laser and Particle Beams, 2010, 22(2): 401-405 doi: 10.3788/HPLPB20102202.0401
    [17]
    Zhang Baiyi, Cai Guobiao, He Bijiao, et al. Plume neutralization of an ionic liquid electrospray thruster: better insights from particle-in-cell modelling[J]. Plasma Sources Science and Technology, 2021, 30: 125009. doi: 10.1088/1361-6595/ac3e7f
    [18]
    Asher J S, Wang J. Three-dimensional particle-in-cell simulations of bipolar ionic electrospray thruster plume[J]. Journal of Propulsion and Power, 2022, 38(4): 573-580. doi: 10.2514/1.B38610
    [19]
    Du Zening, Wu Zhiwen, Li Jin, et al. Study on the plume self-neutralization of ionic liquid electrospray thruster based on median potential[J]. Plasma Sources Science and Technology, 2024, 33: 055016. doi: 10.1088/1361-6595/ad4ac3
    [20]
    Gallud X, Lozano P C. The emission properties, structure and stability of ionic liquid menisci undergoing electrically assisted ion evaporation[J]. Journal of Fluid Mechanics, 2022, 933: A43. doi: 10.1017/jfm.2021.988
    [21]
    Romero-Sanz I, de La Mora J F. Energy distribution and spatial structure of electrosprays of ionic liquids in vacuo[J]. Journal of Applied Physics, 2004, 95(4): 2123-2129. doi: 10.1063/1.1639947
    [22]
    Lund S M, Kikuchi T, Davidson R C. Generation of initial kinetic distributions for simulation of long-pulse charged particle beams with high space-charge intensity[J]. Physical Review Special Topics - Accelerators and Beams, 2009, 12: 114801. doi: 10.1103/PhysRevSTAB.12.114801
    [23]
    Humphries S Jr. Charged particle beams[M]. New York: Wiley, 1990.
    [24]
    Lozano P, Martínez-Sánchez M. Ionic liquid ion sources: characterization of externally wetted emitters[J]. Journal of Colloid and Interface Science, 2005, 282(2): 415-421. doi: 10.1016/j.jcis.2004.08.132
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article views (639) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return