Volume 37 Issue 3
Feb.  2025
Turn off MathJax
Article Contents
Wei Bing, Zhang Yuanjun, Kang Junjun, et al. Parameter measurement of passive integrator[J]. High Power Laser and Particle Beams, 2025, 37: 035019. doi: 10.11884/HPLPB202537.240267
Citation: Wei Bing, Zhang Yuanjun, Kang Junjun, et al. Parameter measurement of passive integrator[J]. High Power Laser and Particle Beams, 2025, 37: 035019. doi: 10.11884/HPLPB202537.240267

Parameter measurement of passive integrator

doi: 10.11884/HPLPB202537.240267
  • Received Date: 2024-08-18
  • Accepted Date: 2025-02-10
  • Rev Recd Date: 2025-02-10
  • Available Online: 2025-03-07
  • Publish Date: 2025-03-15
  • To obtain the actual bandwidth and RC time constant of the passive integrator, the frequency characteristics of the integrator under 1 MΩ load are measured by using an active high impedance probe and a network analyzer. The simulation results show that the low frequency inflection point of integrator with 1 MΩ load is much lower than that of integrator with 50 Ω load, and the measured results are consistent with the simulation results. The measured results show that the high frequency band of the integrator frequency characteristic deviates from the theoretical trend of linear attenuation inversely proportional to the frequency, which is related to the spurious parameters of the actual circuit. The upper frequency limit of the integrator is determined by transforming the ordinate, and the working bandwidth of the integrator can be obtained by combining the calculated low frequency results. The RC constant is calculated by using the amplitude-frequency characteristic formula of integrator combined with the frequency sweep measurement results, which is simple and has less uncertainty.
  • loading
  • [1]
    Wagoner T C, Stygar W A, Ives H C, et al. Differential-output B-dot and D-dot monitors for current and voltage measurements on a 20-MA, 3-MV pulsed-power accelerator[J]. Phys Rev ST Accel Beams, 2008, 11: 100401. doi: 10.1103/PhysRevSTAB.11.100401
    [2]
    李洪涛, 栾崇彪, 赵娟, 等. 特种电源技术研究进展概述[J]. 强激光与粒子束, 2019, 31:040001 doi: 10.11884/HPLPB201931.19007

    Li Hongtao, Luan Chongbiao, Zhao Juan, et al. Status of special power supplies technology research[J]. High Power Laser and Particle Beams, 2019, 31: 040001 doi: 10.11884/HPLPB201931.19007
    [3]
    呼义翔, 韩娟娟, 郭宁, 等. 磁绝缘传输线电流测量差模式B-dot探头[J]. 强激光与粒子束, 2012, 24(10):2511-2515 doi: 10.3788/HPLPB20122410.2511

    Hu Yixiang, Han Juanjuan, Guo Ning, et al. Differential B-dot monitor used for current measure of magnetically insulated transmission lines[J]. High Power Laser and Particle Beams, 2012, 24(10): 2511-2515 doi: 10.3788/HPLPB20122410.2511
    [4]
    Novac B M, Xiao R Z, Huiskamp T, et al. Theoretical and experimental studies of off-the-shelf V-dot probes[J]. IEEE Trans Plasma Sci, 2018, 46(8): 2985-2992. doi: 10.1109/TPS.2018.2854971
    [5]
    李勤, 王永伟, 刘云龙, 等. 无源RC积分器在多脉冲信号测量中的问题分析[J]. 强激光与粒子束, 2018, 30:095003 doi: 10.11884/HPLPB201830.180021

    Li Qin, Wang Yongwei, Liu Yunlong, et al. Analysis of passive RC integrator in multi pulse signal measurement[J]. High Power Laser and Particle Beams, 2018, 30: 095003 doi: 10.11884/HPLPB201830.180021
    [6]
    耿力东, 谢卫平, 羊强, 等. 基于PFN-Marx技术的200 keV脉冲X射线源设计与实验[J]. 强激光与粒子束, 2022, 34:085002 doi: 10.11884/HPLPB202234.210573

    Geng Lidong, Xie Weiping, Yang Qiang, et al. Design and experiments of the 200 keV pulse X-ray source based on PFN-Marx technology[J]. High Power Laser and Particle Beams, 2022, 34: 085002 doi: 10.11884/HPLPB202234.210573
    [7]
    van Oorschot J J, Huiskamp T. Rogowski and D-dot sensors for nanosecond high-voltage and high-current pulse measurements in impedance-matched pulse generators[J]. IEEE Trans Plasma Sci, 2023, 51(4): 1107-1116. doi: 10.1109/TPS.2023.3259643
    [8]
    刘宏伟, 栾崇彪, 袁建强, 等. 雷电间接效应多重脉冲组电流产生装置的设计[J]. 强激光与粒子束, 2024, 36:025001 doi: 10.11884/HPLPB202436.230241

    Liu Hongwei, Luan Chongbiao, Yuan Jianqian, et al. Design of multiple pulse group current generation device for indirect lightning effects[J]. High Power Laser and Particle Beams, 2024, 36: 025001 doi: 10.11884/HPLPB202436.230241
    [9]
    Jóśko A, Dziadak B, Starzynski J, et al. Derivative probes signal integration techniques for high energy pulses measurements[J]. Energies, 2022, 15: 2244. doi: 10.3390/en15062244
    [10]
    Johnson J B, Ekdahl C A, Broste W B. B-dot detector signal recording at the DARHT II accelerator[C]//16th IEEE International Pulsed Power Conference. 2007: 490-492.
    [11]
    卫兵, 傅贞, 王玉娟, 等. 无源RC积分器频率响应特性分析[J]. 高电压技术, 2008, 34(1):53-56,77

    Wei Bing, Fu Zhen, Wang Yujuan, et al. Frequency response analysis of passive RC integrator[J]. High Voltage Engineering, 2008, 34(1): 53-56,77
    [12]
    卫兵, 卿燕玲, 付佳斌, 等. 宽频带无源积分器的设计和实验[J]. 强激光与粒子束, 2011, 23(4):1108-1112 doi: 10.3788/HPLPB20112304.1108

    Wei Bing, Qing Yanling, Fu Jiabin, et al. Design and performance of wideband coaxial passive integrator[J]. High Power Laser and Particle Beams, 2011, 23(4): 1108-1112 doi: 10.3788/HPLPB20112304.1108
    [13]
    Wei Bing, Guo Fan, Zhang Yuanjun, et al. A passive integrator with bandwidth over gigahertz[J]. IEEE Sensors Journal, 2024, 24(16): 25851-25857. doi: 10.1109/JSEN.2024.3416134
    [14]
    MONTEN. Passive integrator[DB/OL]. https://www.montena.com/fileadmin/technology_tests/documents/datasheets/DatasheetITRintegrators.pdf.
    [15]
    卫兵, 傅贞, 卿燕玲, 等. 一种同轴型阻容积分器: 201621458935.5[P]. 2017-08-18

    Wei Bing, Fu Zhen, Qing Yanling, et al. A coaxial passive RC integrator: 201621458935.5[P]. 2017-08-18
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (310) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return