Volume 37 Issue 4
Mar.  2025
Turn off MathJax
Article Contents
Cheng Jun, Liu Wenyuan, Wu Ping, et al. Study on resistance to high current electron beam bombardment of different types of graphite[J]. High Power Laser and Particle Beams, 2025, 37: 043005. doi: 10.11884/HPLPB202537.240288
Citation: Cheng Jun, Liu Wenyuan, Wu Ping, et al. Study on resistance to high current electron beam bombardment of different types of graphite[J]. High Power Laser and Particle Beams, 2025, 37: 043005. doi: 10.11884/HPLPB202537.240288

Study on resistance to high current electron beam bombardment of different types of graphite

doi: 10.11884/HPLPB202537.240288
  • Received Date: 2024-08-27
  • Accepted Date: 2024-12-06
  • Rev Recd Date: 2024-12-06
  • Available Online: 2024-12-18
  • Publish Date: 2025-04-15
  • In this paper, four typical types of high purity graphite and their titanium carbide coating modified materials were tested as anodes in high current electron beam diodes. The results show that the currents of the diodes were obviously different when the graphite anodes were under electron beam bombardment with voltage 860 kV, current 11 kA and pulse width 40 ns. The current curve for graphite 4# was normal even after interaction of 167 electron pulses while the other graphite current curves showed different degrees of tail erosion. The ablative experiments of titanium carbide coating on graphite further verified the difference of the graphite, indicating that the thermal conductivity of graphite has an important effect on its ablative resistance. The higher the thermal conductivity of graphite, the lower the degree of recrystallization of titanium carbide, the better the corrosion resistance of graphite. Therefore, graphite 4# has an excellent resistance to electron beam bombardment and would be promising for application as collector materials in relativistic traveling wave tubes.
  • loading
  • [1]
    Chen Y, Mankowski J, Walter J, et al. Cathode and anode optimization in a virtual cathode oscillator[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(4): 1037-1044. doi: 10.1109/TDEI.2007.4286545
    [2]
    陈昌华, 刘国治, 宋志敏, 等. 引导磁场对相对论返波管微波功率的影响[J]. 强激光与粒子束, 2000, 12(6):745-748

    Chen Changhua, Liu Gouzhi, Song Zhimin, et al. Effects of axial guiding magnetic field on microwave power of relativistic backward oscillators[J]. High Power Laser and Particle Beams, 2000, 12(6): 745-748
    [3]
    陈昌华, 刘国治. 相对论返波管导论[M]. 北京: 科学出版社, 2021

    Chen Changhua, Liu Gouzhi. Introduction to relativistic backward wave oscillator[M]. Beijing: Science Press, 2021
    [4]
    Tan Nongchao, Wu Ping, Hua Ye, et al. Mechanism of radio frequency breakdown on metal surfaces in relativistic backward wave oscillator[J]. Physics of Plasmas, 2021, 28: 022107. doi: 10.1063/5.0035386
    [5]
    夏文锋, 张冬晓, 刘启晨, 等. 一种新型高功率轻小型化脉冲驱动源研制[J]. 现代应用物理, 2023, 14:030506

    Xia Wenfeng, Zhang Dongxiao, Liu Qichen, et al. A novel lightweight and miniaturized high power pulse drive source[J]. Modern Applied Physics, 2023, 14: 030506
    [6]
    Parson J, Dickens J, Walter J, et al. Gas evolution of nickel, stainless steel 316 and titanium anodes in vacuum sealed tubes[C]//2012 IEEE International Power Modulator and High Voltage Conference. 2012: 239-240.
    [7]
    Roy A, Menon R, Mitra S, et al. Plasma expansion and fast gap closure in a high power electron beam diode[J]. Physics of Plasmas, 2009, 16: 053103. doi: 10.1063/1.3129802
    [8]
    霍少飞, 孙钧, 梁玉钦, 等. 不锈钢电子束收集极的损伤能量密度阈值[J]. 强激光与粒子束, 2014, 26:063008 doi: 10.11884/HPLPB201426.063008

    Huo Shaofei, Sun Jun, Liang Yuqin, et al. Damage threshold of energy density of stainless steel electron beam collector[J]. High Power Laser and Particle Beams, 2014, 26: 063008 doi: 10.11884/HPLPB201426.063008
    [9]
    谭维兵, 李小泽, 李爽, 等. 永磁约束二极管阳极管头轰击现象研究[J]. 现代应用物理, 2023, 14:040508 doi: 10.12061/j.issn.2095-6223.2023.040508

    Tan Weibing, Li Xiaoze, Li Shuang, et al. Bombardment mark on the anode head of diode under permanent magnetic field[J]. Modern Applied Physics, 2023, 14: 040508 doi: 10.12061/j.issn.2095-6223.2023.040508
    [10]
    华叶. 碳化物改性石墨材料的强流电子束发射和收集特性研究[D]. 长沙: 国防科学技术大学, 2019

    Hua Ye. Research on the emission and collection characteristics of intense electron beams for carbide modified graphite materials[D]. Changsha: National University of Defense Technology, 2019
    [11]
    He Juntao, Cao Yibing, Zhang Jiande, et al. Effects of intense relativistic electron beam on the microwave generation in a foilless low-impedance transit-time oscillator[J]. IEEE Transactions on Plasma Science, 2012, 40(6): 1622-1631. doi: 10.1109/TPS.2012.2192484
    [12]
    Shiffler D, Nation J A, Schachter L, et al. A high-power two stage traveling-wave tube amplifier[J]. Journal of Applied Physics, 1991, 70(1): 106-113. doi: 10.1063/1.350322
    [13]
    Chen Changhua, Tang Yunsheng, Liu Wenyuan, et al. Resistance to intense electron beam bombardment of TiC/Graphite: numerical modeling and experimental investigation[J]. Ceramics International, 2021, 47(1): 361-366. doi: 10.1016/j.ceramint.2020.08.141
    [14]
    唐运生, 陈昌华, 刘文元, 等. 沉积温度对TiC涂层微观形貌及导电性能的影响[J]. 现代应用物理, 2020, 11:020801 doi: 10.12061/j.issn.2095-6223.2020.020801

    Tang Yunsheng, Chen Changhua, Liu Wenyuan, et al. Effect of deposition temperature on morphology and conductivity of TiC coatings[J]. Modern Applied Physics, 2020, 11: 020801 doi: 10.12061/j.issn.2095-6223.2020.020801
    [15]
    Shulov V A, Engelko V I, Mueller G, et al. Mechanisms of element redistribution into the surface layer of refractory alloy parts during their irradiation by intense pulsed electron beams[C]//2004 International Conference on High-Power Particle Beams. 2004: 647-650.
    [16]
    Nusinovich G S, Kashyn D G, Antonsen T M. Effect of metallic dust on operation of repetition-rate high-power microwave devices[J]. IEEE Transactions on Plasma Science, 2011, 39(8): 1680-1683. doi: 10.1109/TPS.2011.2154346
    [17]
    Zhou Yichun, Duan Zhuping, Yang Qibing. Thermal shock wave and spall fracture caused by an electron beam[J]. Natural Science Journal of Xiangtan University, 1997, 19(2): 117-128.
    [18]
    Wong B T, Mengüç M P, Vallance R R. Thermal conduction induced by electron-beam[J]. International Journal of Heat and Mass Transfer, 2007, 50(25/26): 5099-5107.
    [19]
    Nishikawa S, Sawada M, Marukawa Y, et al. Thermal erosion of graphite by pulsed electron beam[J]. Journal of Nuclear Materials, 1991, 179/181: 176-179. doi: 10.1016/0022-3115(91)90055-C
    [20]
    Robin J E, Srivastava R D. High-energy electron-beam deposition onto a hot graphite surface[J]. Applied Physics Letters, 1973, 22(4): 153. doi: 10.1063/1.1654592
    [21]
    谌继明, 刘翔, 肖征贤, 等. 掺杂石墨在高能激光束和电子束作用下的热冲击行为[J]. 核科学与工程, 2002, 22(1):47-52 doi: 10.3321/j.issn:0258-0918.2002.01.009

    Chen Jiming, Liu Xiang, Xiao Zhenxian, et al. Thermal shock behavior of doped graphites tested by high energy laser beam and electron beam[J]. Chinese Journal of Nuclear Science and Engineering, 2002, 22(1): 47-52 doi: 10.3321/j.issn:0258-0918.2002.01.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article views (473) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return