| Citation: | Cheng Jun, Liu Wenyuan, Wu Ping, et al. Study on resistance to high current electron beam bombardment of different types of graphite[J]. High Power Laser and Particle Beams, 2025, 37: 043005. doi: 10.11884/HPLPB202537.240288 |
| [1] |
Chen Y, Mankowski J, Walter J, et al. Cathode and anode optimization in a virtual cathode oscillator[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(4): 1037-1044. doi: 10.1109/TDEI.2007.4286545
|
| [2] |
陈昌华, 刘国治, 宋志敏, 等. 引导磁场对相对论返波管微波功率的影响[J]. 强激光与粒子束, 2000, 12(6):745-748
Chen Changhua, Liu Gouzhi, Song Zhimin, et al. Effects of axial guiding magnetic field on microwave power of relativistic backward oscillators[J]. High Power Laser and Particle Beams, 2000, 12(6): 745-748
|
| [3] |
陈昌华, 刘国治. 相对论返波管导论[M]. 北京: 科学出版社, 2021
Chen Changhua, Liu Gouzhi. Introduction to relativistic backward wave oscillator[M]. Beijing: Science Press, 2021
|
| [4] |
Tan Nongchao, Wu Ping, Hua Ye, et al. Mechanism of radio frequency breakdown on metal surfaces in relativistic backward wave oscillator[J]. Physics of Plasmas, 2021, 28: 022107. doi: 10.1063/5.0035386
|
| [5] |
夏文锋, 张冬晓, 刘启晨, 等. 一种新型高功率轻小型化脉冲驱动源研制[J]. 现代应用物理, 2023, 14:030506
Xia Wenfeng, Zhang Dongxiao, Liu Qichen, et al. A novel lightweight and miniaturized high power pulse drive source[J]. Modern Applied Physics, 2023, 14: 030506
|
| [6] |
Parson J, Dickens J, Walter J, et al. Gas evolution of nickel, stainless steel 316 and titanium anodes in vacuum sealed tubes[C]//2012 IEEE International Power Modulator and High Voltage Conference. 2012: 239-240.
|
| [7] |
Roy A, Menon R, Mitra S, et al. Plasma expansion and fast gap closure in a high power electron beam diode[J]. Physics of Plasmas, 2009, 16: 053103. doi: 10.1063/1.3129802
|
| [8] |
霍少飞, 孙钧, 梁玉钦, 等. 不锈钢电子束收集极的损伤能量密度阈值[J]. 强激光与粒子束, 2014, 26:063008 doi: 10.11884/HPLPB201426.063008
Huo Shaofei, Sun Jun, Liang Yuqin, et al. Damage threshold of energy density of stainless steel electron beam collector[J]. High Power Laser and Particle Beams, 2014, 26: 063008 doi: 10.11884/HPLPB201426.063008
|
| [9] |
谭维兵, 李小泽, 李爽, 等. 永磁约束二极管阳极管头轰击现象研究[J]. 现代应用物理, 2023, 14:040508 doi: 10.12061/j.issn.2095-6223.2023.040508
Tan Weibing, Li Xiaoze, Li Shuang, et al. Bombardment mark on the anode head of diode under permanent magnetic field[J]. Modern Applied Physics, 2023, 14: 040508 doi: 10.12061/j.issn.2095-6223.2023.040508
|
| [10] |
华叶. 碳化物改性石墨材料的强流电子束发射和收集特性研究[D]. 长沙: 国防科学技术大学, 2019
Hua Ye. Research on the emission and collection characteristics of intense electron beams for carbide modified graphite materials[D]. Changsha: National University of Defense Technology, 2019
|
| [11] |
He Juntao, Cao Yibing, Zhang Jiande, et al. Effects of intense relativistic electron beam on the microwave generation in a foilless low-impedance transit-time oscillator[J]. IEEE Transactions on Plasma Science, 2012, 40(6): 1622-1631. doi: 10.1109/TPS.2012.2192484
|
| [12] |
Shiffler D, Nation J A, Schachter L, et al. A high-power two stage traveling-wave tube amplifier[J]. Journal of Applied Physics, 1991, 70(1): 106-113. doi: 10.1063/1.350322
|
| [13] |
Chen Changhua, Tang Yunsheng, Liu Wenyuan, et al. Resistance to intense electron beam bombardment of TiC/Graphite: numerical modeling and experimental investigation[J]. Ceramics International, 2021, 47(1): 361-366. doi: 10.1016/j.ceramint.2020.08.141
|
| [14] |
唐运生, 陈昌华, 刘文元, 等. 沉积温度对TiC涂层微观形貌及导电性能的影响[J]. 现代应用物理, 2020, 11:020801 doi: 10.12061/j.issn.2095-6223.2020.020801
Tang Yunsheng, Chen Changhua, Liu Wenyuan, et al. Effect of deposition temperature on morphology and conductivity of TiC coatings[J]. Modern Applied Physics, 2020, 11: 020801 doi: 10.12061/j.issn.2095-6223.2020.020801
|
| [15] |
Shulov V A, Engelko V I, Mueller G, et al. Mechanisms of element redistribution into the surface layer of refractory alloy parts during their irradiation by intense pulsed electron beams[C]//2004 International Conference on High-Power Particle Beams. 2004: 647-650.
|
| [16] |
Nusinovich G S, Kashyn D G, Antonsen T M. Effect of metallic dust on operation of repetition-rate high-power microwave devices[J]. IEEE Transactions on Plasma Science, 2011, 39(8): 1680-1683. doi: 10.1109/TPS.2011.2154346
|
| [17] |
Zhou Yichun, Duan Zhuping, Yang Qibing. Thermal shock wave and spall fracture caused by an electron beam[J]. Natural Science Journal of Xiangtan University, 1997, 19(2): 117-128.
|
| [18] |
Wong B T, Mengüç M P, Vallance R R. Thermal conduction induced by electron-beam[J]. International Journal of Heat and Mass Transfer, 2007, 50(25/26): 5099-5107.
|
| [19] |
Nishikawa S, Sawada M, Marukawa Y, et al. Thermal erosion of graphite by pulsed electron beam[J]. Journal of Nuclear Materials, 1991, 179/181: 176-179. doi: 10.1016/0022-3115(91)90055-C
|
| [20] |
Robin J E, Srivastava R D. High-energy electron-beam deposition onto a hot graphite surface[J]. Applied Physics Letters, 1973, 22(4): 153. doi: 10.1063/1.1654592
|
| [21] |
谌继明, 刘翔, 肖征贤, 等. 掺杂石墨在高能激光束和电子束作用下的热冲击行为[J]. 核科学与工程, 2002, 22(1):47-52 doi: 10.3321/j.issn:0258-0918.2002.01.009
Chen Jiming, Liu Xiang, Xiao Zhenxian, et al. Thermal shock behavior of doped graphites tested by high energy laser beam and electron beam[J]. Chinese Journal of Nuclear Science and Engineering, 2002, 22(1): 47-52 doi: 10.3321/j.issn:0258-0918.2002.01.009
|