Volume 37 Issue 4
Mar.  2025
Turn off MathJax
Article Contents
Wang Yicheng, Chai Mengjuan, Yu Daojie, et al. Construction and evaluation method of unmanned aerial vehicle faults simulation dataset[J]. High Power Laser and Particle Beams, 2025, 37: 043006. doi: 10.11884/HPLPB202537.240340
Citation: Wang Yicheng, Chai Mengjuan, Yu Daojie, et al. Construction and evaluation method of unmanned aerial vehicle faults simulation dataset[J]. High Power Laser and Particle Beams, 2025, 37: 043006. doi: 10.11884/HPLPB202537.240340

Construction and evaluation method of unmanned aerial vehicle faults simulation dataset

doi: 10.11884/HPLPB202537.240340
  • Received Date: 2024-09-23
  • Accepted Date: 2024-12-11
  • Rev Recd Date: 2024-12-11
  • Available Online: 2024-12-20
  • Publish Date: 2025-04-15
  • The complexity of unmanned aerial vehicle (UAV) systems and the diversity of their fault modes present significant challenges to their reliability, stability, and safety. To address the issue of incomplete fault UAV data samples, a fault simulation dataset was constructed using a predefined fault injection method. This dataset is based on four models of faults: bias faults, drift faults, lock faults, and scale faults, allowing equivalent simulation of the drone in fault-free states, actuator failures, and sensor failures. Furthermore, the dataset was evaluated using deep learning networks. Simulation results demonstrate that the three deep learning architectures—WDCNN, ResNet, and QCNN—validate the completeness and effectiveness of the construction method and the fault simulation dataset in this paper. In terms of precision, WDCNN achieved over 82%, ResNet exceeded 90%, and QCNN surpassed 92%. The methods proposed in this study provides a complete dataset and evaluation method for data-driven research on UAV fault diagnosis.
  • loading
  • [1]
    Wu Chong, Qi Juntong, Song Dalei, et al. Simultaneous state and parameter estimation based actuator fault detection and diagnosis for an unmanned helicopter[J]. International Journal of Applied Mathematics and Computer Science, 2015, 25(1): 175-187. doi: 10.1515/amcs-2015-0013
    [2]
    王晓峰, 毛德强, 冯尚聪. 现代故障诊断技术研究综述[J]. 中国测试, 2013, 39(6):93-98

    Wang Xiaofeng, Mao Deqiang, Feng Shangcong. Review on modern fault diagnosis technologies[J]. China Measurement & Test, 2013, 39(6): 93-98
    [3]
    袁杰, 王福利, 王姝, 等. 基于D-S融合的混合专家知识系统故障诊断方法[J]. 自动化学报, 2017, 43(9):1580-1587

    Yuan Jie, Wang Fuli, Wang Shu, et al. A fault diagnosis approach by D-S fusion theory and hybrid expert knowledge system[J]. Acta Automatica Sinica, 2017, 43(9): 1580-1587
    [4]
    王迪, 刘佳, 王岩峰, 等. 基于多信号流模型的电子设备故障诊断方法[J]. 强激光与粒子束, 2017, 29:075101 doi: 10.11884/HPLPB201729.160562

    Wang Di, Liu Jia, Wang Yanfeng, et al. Modeling method of fault diagnosis of electronic device based on multi-signal flow[J]. High Power Laser and Particle Beams, 2017, 29: 07510 doi: 10.11884/HPLPB201729.160562
    [5]
    李晗, 萧德云. 基于数据驱动的故障诊断方法综述[J]. 控制与决策, 2011, 26(1):1-9

    Li Han, Xiao Deyun. Survey on data driven fault diagnosis methods[J]. Control and Decision, 2011, 26(1): 1-9
    [6]
    Baskaya E, Bronz M, Delahaye D. Fault detection & diagnosis for small UAVs via machine learning[C]//2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC). 2017: 1-6.
    [7]
    Bondyra A, Gasior P, Gardecki S, et al. Fault diagnosis and condition monitoring of UAV rotor using signal processing[C]//2017 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA). 2017: 233-238.
    [8]
    Liang Shaojun, Zhang Shirong, Huang Yuping, et al. Data-driven fault diagnosis of FW-UAVs with consideration of multiple operation conditions[J]. ISA Transactions, 2022, 126: 472-485. doi: 10.1016/j.isatra.2021.07.043
    [9]
    Chen Yuepeng, Zhang Cong, Zhang Qingyong, et al. UAV fault detection based on GA-BP neural network[C]//2017 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC). 2017: 806-811.
    [10]
    Sadhu V, Zonouz S, Pompili D. On-board deep-learning-based unmanned aerial vehicle fault cause detection and identification[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). 2020: 5255-5261.
    [11]
    Guo Dingfei, Zhong Maiying, Ji Hongquan, et al. A hybrid feature model and deep learning based fault diagnosis for unmanned aerial vehicle sensors[J]. Neurocomputing, 2018, 319: 155-163. doi: 10.1016/j.neucom.2018.08.046
    [12]
    Chen Qian, Dong Xingjian, Tu Guowei, et al. TFN: an interpretable neural network with time-frequency transform embedded for intelligent fault diagnosis[J]. Mechanical Systems and Signal Processing, 2024, 207: 110952. doi: 10.1016/j.ymssp.2023.110952
    [13]
    Salamon J, Bello J P. Deep convolutional neural networks and data augmentation for environmental sound classification[J]. IEEE Signal Processing Letters, 2017, 24(3): 279-283. doi: 10.1109/LSP.2017.2657381
    [14]
    He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
    [15]
    Liao Jingxiao, Dong Hangcheng, Sun Zhiqi, et al. Attention-embedded quadratic network (Qttention) for effective and interpretable bearing fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3511113.
    [16]
    Lyu Y, Vosselman G, Xia Guisong, et al. UAVid: a semantic segmentation dataset for UAV imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 165: 108-119. doi: 10.1016/j.isprsjprs.2020.05.009
    [17]
    Antonini A, Guerra W, Murali V, et al. The blackbird UAV dataset[J]. The International Journal of Robotics Research, 2020, 39(10/11): 1346-1364.
    [18]
    Nguyen T M, Yuan Shenghai, Cao Muqing, et al. NTU VIRAL: a visual-inertial-ranging-lidar dataset, from an aerial vehicle viewpoint[J]. The International Journal of Robotics Research, 2022, 41(3): 270-280. doi: 10.1177/02783649211052312
    [19]
    Keipour A, Mousaei M, Scherer S. ALFA: a dataset for UAV fault and anomaly detection[J]. The International Journal of Robotics Research, 2021, 40(2/3): 515-520.
    [20]
    余道杰, 贺凯, 郭柏森, 等. 无人机定位系统辐照干扰失效全过程与机理分析[J]. 强激光与粒子束, 2023, 35:023002 doi: 10.11884/HPLPB202335.220196

    Yu Daojie, He Kai, Guo Baisen, et al. Failure process and mechanism of irradiation interference in unmanned aerial vehicle positioning system[J]. High Power Laser and Particle Beams, 2023, 35: 023002 doi: 10.11884/HPLPB202335.220196
    [21]
    Baskett B. Aeronautical design standard performance specification handling qualities requirements for military rotorcraft[D]. Alabama: United States Army Aviation and Missile Command Aviation Engineering Dierctorate Redstone Arsenal, 2000.
    [22]
    苗建国, 王剑宇, 张恒, 等. 无人机故障诊断技术研究进展概述[J]. 仪器仪表学报, 2020, 41(9):56-69

    Miao Jianguo, Wang Jianyu, Zhang Heng, et al. Review of the development of fault diagnosis technology for unmanned aerial vehicle[J]. Chinese Journal of Scientific Instrument, 2020, 41(9): 56-69
    [23]
    Jun Wang, Tian Yuyang. Fault tolerant control of quadrotor UAV based on support vector machine[C]//2019 5th International Conference on Control Science and Systems Engineering (ICCSSE). 2019: 10-13.
    [24]
    王莉娜, 刘贞报, 院金彪, 等. 四旋翼无人机的自适应故障诊断与估计[J]. 北京航空航天大学学报, 2023, 49(9):2395-2405

    Wang Lina, Liu Zhenbao, Yuan Jinbiao, et al. Adaptive fault diagnosis and estimation for quadrotor UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(9): 2395-2405
    [25]
    He Kai, Yu Daojie, Wang Dong, et al. Graph attention network-based fault detection for UAVs with multivariant time series flight data[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 3530213.
    [26]
    刘旭航, 刘小雄, 章卫国, 等. 基于加速度修正模型的无人机姿态解算算法[J]. 西北工业大学学报, 2021, 39(1):175-181 doi: 10.3969/j.issn.1000-2758.2021.01.022

    Liu Xuhang, Liu Xiaoxiong, Zhang Weiguo, et al. UAV attitude calculation algorithm based on acceleration correction model[J]. Journal of Northwestern Polytechnical University, 2021, 39(1): 175-181 doi: 10.3969/j.issn.1000-2758.2021.01.022
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article views (836) PDF downloads(104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return