| Citation: | Tang Xingmin, Zhang Tengfei, Zhang Bin, et al. Burnup lib compression method based on pseudo decay nuclides definement[J]. High Power Laser and Particle Beams, 2025, 37: 026002. doi: 10.11884/HPLPB202537.240307 |
| [1] |
Chadwick M B, Obložinský P, Herman M, et al. ENDF/B-VII. 0: next generation evaluated nuclear data library for nuclear science and technology[J]. Nuclear Data Sheets, 2006, 107(12): 2931-3060. doi: 10.1016/j.nds.2006.11.001
|
| [2] |
Aldama D L, Leszczynski F, Trkov A. WIMS-D library update[R]. STI/PUB-1264, Vienna: IAEA, 2007.
|
| [3] |
刘燕平, 李世清. 裂变产物中子数据库重要核素的分析[J]. 武汉大学学报(自然科学版), 1990(2):56-58
Liu Yanping, Li Shiqing. The analyses of important nuclides for fission products neutron nuclear data library (FPNNDL)[J]. Journal of Wuhan University (Natural Science Edition), 1990(2): 56-58
|
| [4] |
Katano R, Yamamoto A, Endo T, et al. Generation of simplified burnup chain using contribution matrix of nuclide production[C]//Proceedings of the PHYSOR2014—The Role of Reactor Physics towards a Sustainable Future. 2014.
|
| [5] |
Kajihara T, Tsuji M, Chiba G, et al. Automatic construction of a simplified burn-up chain model by the singular value decomposition[J]. Annals of Nuclear Energy, 2016, 94: 742-749. doi: 10.1016/j.anucene.2016.04.034
|
| [6] |
Chiba G, Tsuji M, Narabayashi T, et al. Important fission product nuclides identification method for simplified burnup chain construction[J]. Journal of Nuclear Science and Technology, 2015, 52(7/8): 953-960.
|
| [7] |
胡钰莹, 廖鸿宽, 姚栋, 等. 双约束核素筛选与燃耗链压缩算法研究[J]. 核动力工程, 2022, 43(4):218-222
Hu Yuying, Liao Hongkuan, Yao Dong, et al. Research on dual-restricted nuclide selection and burnup chain compression algorithm[J]. Nuclear Power Engineering, 2022, 43(4): 218-222
|
| [8] |
黄凯, 吴宏春, 李云召, 等. 基于定量重要性分析的燃耗链压缩方法[J]. 强激光与粒子束, 2017, 29:036002 doi: 10.11884/HPLPB201729.160302
Huang Kai, Wu Hongchun, Li Yunzhao, et al. Depletion chain compression method via quantitative significance analysis[J]. High Power Laser and Particle Beams, 2017, 29: 036002 doi: 10.11884/HPLPB201729.160302
|
| [9] |
谢仲生. 核反应堆物理分析[M]. 西安: 西安交通大学出版社, 2004: 165-172
Xie Zhongsheng. Nuclear reactor physics analysis[M]. Xi'an: Xi'an Jiaotong University Press, 2004: 165-172
|
| [10] |
Zhang Tengfei, Xiao Wei, Yin Han, et al. VITAS: a multi-purpose simulation code for the solution of neutron transport problems based on variational nodal methods[J]. Annals of Nuclear Energy, 2022, 178: 109335. doi: 10.1016/j.anucene.2022.109335
|
| [11] |
Pusa M, Leppänen J. Computing the matrix exponential in burnup calculations[J]. Nuclear Science and Engineering, 2010, 164(2): 140-150. doi: 10.13182/NSE09-14
|
| [12] |
Al-Baali M, Fletcher R. Variational methods for non-linear least-squares[J]. Journal of the Operational Research Society, 1985, 36(5): 405-421. doi: 10.1057/jors.1985.68
|
| [13] |
Madsen K, Nielsen H B, Tingleff O. Methods for non-linear least squares problems[M]. 2nd ed. Copenhagen: Technical University of Denmark, 2004: 24-28.
|
| [14] |
Gavin H P. The Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems[D]. Durham: Duke University, 2019.
|
| [15] |
Godfrey A T. VERA core physics benchmark progression problem specifications[R]. CASL-U-2012-0131-004, 2014.
|
| [16] |
Gauld I C, Ryman J C. Nuclide importance to criticality safety, decay heating, and source terms related to transport and interim storage of high-burnup LWR fuel[R]. NUREG/CR-6700, Oak Ridge: Oak Ridge National Laboratory, 2000.
|
| [17] |
Romano P K, Forget B. The OpenMC Monte Carlo particle transport code[J]. Annals of Nuclear Energy, 2013, 51: 274-281. doi: 10.1016/j.anucene.2012.06.040
|