Volume 37 Issue 2
Feb.  2025
Turn off MathJax
Article Contents
Tang Xingmin, Zhang Tengfei, Zhang Bin, et al. Burnup lib compression method based on pseudo decay nuclides definement[J]. High Power Laser and Particle Beams, 2025, 37: 026002. doi: 10.11884/HPLPB202537.240307
Citation: Tang Xingmin, Zhang Tengfei, Zhang Bin, et al. Burnup lib compression method based on pseudo decay nuclides definement[J]. High Power Laser and Particle Beams, 2025, 37: 026002. doi: 10.11884/HPLPB202537.240307

Burnup lib compression method based on pseudo decay nuclides definement

doi: 10.11884/HPLPB202537.240307
  • Received Date: 2024-09-05
  • Accepted Date: 2024-12-20
  • Rev Recd Date: 2024-12-02
  • Available Online: 2025-01-17
  • Publish Date: 2025-02-15
  • The construction of the burnup lib determines the accuracy of burnup and decay heat calculations. The evaluation of burnup information in the nuclear lib is complex, leading to a large, rigid, and inefficient burnup matrix. This paper begins with the basic composition of the burnup lib, considering the impact of each nuclide and its transformation relationships on the accuracy of neutronics calculations and target nuclide nuclear density calculations, which serves as the basis for the compression of the burnup lib. To address the decay heat calculation accuracy loss caused by the compression of fission products, a nonlinear least squares optimization algorithm is used to fit the decay heat release function, and pseudo-decay nuclides are constructed to replace the fission product decay heat calculation, thereby maintaining the accuracy of decay heat calculations. Verification results show that the original detailed burnup lib contains more than 1 500 nuclides, which are reduced to fewer than 200 nuclides after compression. The compressed burnup lib does not introduce significant deviations in the calculation of the effective multiplication factor and nuclear density. In terms of decay heat calculations, the pseudo-decay nuclides significantly restore the decay heat calculation accuracy, with the contribution of decay heat to total power having a calculation deviation of less than 0.5%, meeting the required accuracy for decay heat calculations.
  • loading
  • [1]
    Chadwick M B, Obložinský P, Herman M, et al. ENDF/B-VII. 0: next generation evaluated nuclear data library for nuclear science and technology[J]. Nuclear Data Sheets, 2006, 107(12): 2931-3060. doi: 10.1016/j.nds.2006.11.001
    [2]
    Aldama D L, Leszczynski F, Trkov A. WIMS-D library update[R]. STI/PUB-1264, Vienna: IAEA, 2007.
    [3]
    刘燕平, 李世清. 裂变产物中子数据库重要核素的分析[J]. 武汉大学学报(自然科学版), 1990(2):56-58

    Liu Yanping, Li Shiqing. The analyses of important nuclides for fission products neutron nuclear data library (FPNNDL)[J]. Journal of Wuhan University (Natural Science Edition), 1990(2): 56-58
    [4]
    Katano R, Yamamoto A, Endo T, et al. Generation of simplified burnup chain using contribution matrix of nuclide production[C]//Proceedings of the PHYSOR2014—The Role of Reactor Physics towards a Sustainable Future. 2014.
    [5]
    Kajihara T, Tsuji M, Chiba G, et al. Automatic construction of a simplified burn-up chain model by the singular value decomposition[J]. Annals of Nuclear Energy, 2016, 94: 742-749. doi: 10.1016/j.anucene.2016.04.034
    [6]
    Chiba G, Tsuji M, Narabayashi T, et al. Important fission product nuclides identification method for simplified burnup chain construction[J]. Journal of Nuclear Science and Technology, 2015, 52(7/8): 953-960.
    [7]
    胡钰莹, 廖鸿宽, 姚栋, 等. 双约束核素筛选与燃耗链压缩算法研究[J]. 核动力工程, 2022, 43(4):218-222

    Hu Yuying, Liao Hongkuan, Yao Dong, et al. Research on dual-restricted nuclide selection and burnup chain compression algorithm[J]. Nuclear Power Engineering, 2022, 43(4): 218-222
    [8]
    黄凯, 吴宏春, 李云召, 等. 基于定量重要性分析的燃耗链压缩方法[J]. 强激光与粒子束, 2017, 29:036002 doi: 10.11884/HPLPB201729.160302

    Huang Kai, Wu Hongchun, Li Yunzhao, et al. Depletion chain compression method via quantitative significance analysis[J]. High Power Laser and Particle Beams, 2017, 29: 036002 doi: 10.11884/HPLPB201729.160302
    [9]
    谢仲生. 核反应堆物理分析[M]. 西安: 西安交通大学出版社, 2004: 165-172

    Xie Zhongsheng. Nuclear reactor physics analysis[M]. Xi'an: Xi'an Jiaotong University Press, 2004: 165-172
    [10]
    Zhang Tengfei, Xiao Wei, Yin Han, et al. VITAS: a multi-purpose simulation code for the solution of neutron transport problems based on variational nodal methods[J]. Annals of Nuclear Energy, 2022, 178: 109335. doi: 10.1016/j.anucene.2022.109335
    [11]
    Pusa M, Leppänen J. Computing the matrix exponential in burnup calculations[J]. Nuclear Science and Engineering, 2010, 164(2): 140-150. doi: 10.13182/NSE09-14
    [12]
    Al-Baali M, Fletcher R. Variational methods for non-linear least-squares[J]. Journal of the Operational Research Society, 1985, 36(5): 405-421. doi: 10.1057/jors.1985.68
    [13]
    Madsen K, Nielsen H B, Tingleff O. Methods for non-linear least squares problems[M]. 2nd ed. Copenhagen: Technical University of Denmark, 2004: 24-28.
    [14]
    Gavin H P. The Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems[D]. Durham: Duke University, 2019.
    [15]
    Godfrey A T. VERA core physics benchmark progression problem specifications[R]. CASL-U-2012-0131-004, 2014.
    [16]
    Gauld I C, Ryman J C. Nuclide importance to criticality safety, decay heating, and source terms related to transport and interim storage of high-burnup LWR fuel[R]. NUREG/CR-6700, Oak Ridge: Oak Ridge National Laboratory, 2000.
    [17]
    Romano P K, Forget B. The OpenMC Monte Carlo particle transport code[J]. Annals of Nuclear Energy, 2013, 51: 274-281. doi: 10.1016/j.anucene.2012.06.040
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(7)

    Article views (433) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return