| Citation: | Ye Siyuan, Li Honglong, Li Yuehang, et al. Development of INSL-UniFoam: a multi-physics integrated criticality safety analysis program[J]. High Power Laser and Particle Beams, 2025, 37: 026001. doi: 10.11884/HPLPB202537.240369 |
| [1] |
Kadioglu S Y, Knoll D A, De Oliveira C. Multiphysics analysis of spherical fast burst reactors[J]. Nuclear Science and Engineering, 2009, 163(2): 132-143. doi: 10.13182/NSE09-07
|
| [2] |
Briggs J B, Scott L, Nouri A. The international criticality safety benchmark evaluation project[J]. Nuclear Science and Engineering, 2003, 145(1): 1-10. doi: 10.13182/NSE03-14
|
| [3] |
Wimett T F. Los Alamos: Los Alamos Scientific Lab, 1965.
|
| [4] |
Aufiero M, Fiorina C, Laureau A, et al. Serpent–OpenFOAM coupling in transient mode: simulation of a Godiva prompt critical burst[C]//Proceedings of Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method. 2015.
|
| [5] |
Wilson S C, Biegalski S R, Coats R L. Computational modeling of coupled thermomechanical and neutron transport behavior in a Godiva-like nuclear assembly[J]. Nuclear science and engineering, 2007, 157(3): 344-353. doi: 10.13182/NSE06-28
|
| [6] |
高辉, 钟力晗, 梁文峰, 等. 基于反应性温度系数的金属型脉冲堆波形计算[J]. 原子能科学技术, 2017, 51(5):798-802 doi: 10.7538/yzk.2017.51.05.0798
Gao Hui, Zhong Lihan, Liang Wenfeng, et al. Waveform calculation of metal burst reactors based on reactivity temperature coefficient[J]. Atomic Energy Science and Technology, 2017, 51(5): 798-802 doi: 10.7538/yzk.2017.51.05.0798
|
| [7] |
Fiorina C, Aufiero M, Pelloni S, et al. A time-dependent solver for coupled neutron-transport thermal-mechanics calculations and simulation of a Godiva prompt-critical burst[C]//Proceedings of the 2014 22nd International Conference on Nuclear Engineering. 2014.
|
| [8] |
郭树伟, 陈珍平, 江新标, 等. 金属核燃料快中子脉冲堆核-热-力耦合计算方法研究[J]. 核动力工程, 2022, 43(4):31-37
Guo Shuwei, Chen Zhenping, Jiang Xinbiao, et al. Study on neutronic/thermal-mechanical coupling calculation method for fast-neutron pulse reactor with metallic nuclear fuel[J]. Nuclear Power Engineering, 2022, 43(4): 31-37
|
| [9] |
Wang Lipeng, Guo Shuwei, Hu Tianliang, et al. Transient simulation and parameter sensitivity analysis of Godiva experiment based on MOOSE platform[J]. Energies, 2023, 16(18): 6575. doi: 10.3390/en16186575
|
| [10] |
Blanco J A. Neutronic, thermohydraulic and thermomechanical coupling for the modeling of criticality accidents in nuclear systems[D]. Grenoble: Université Grenoble Alpes, 2020.
|
| [11] |
杨波. 离散纵标法求解含有各向异性散射的输运方程[D]. 绵阳: 中国工程物理研究院, 2005
Yang Bo. Solution of transport equations with anisotropic scattering using the discrete ordinates method[D]. Mianyang: China Academy of Engineering Physics, 2005
|
| [12] |
Jasak H, Jemcov A, Tuković Z. OpenFOAM: a C++ library for complex physics simulations[C]//Proceedings of the International Workshop on Coupled Methods in Numerical Dynamics. 2007.
|
| [13] |
Eymard R, Gallouët T, Herbin R. Finite volume methods[J]. Handbook of Numerical Analysis, 2000, 7: 713-1018.
|
| [14] |
Peterson R, Newby G. Lady Godiva: an unreflected uranium-235 critical assembly[R]. Los Alamos: Los Alamos National Lab, 1953.
|
| [15] |
Geuzaine C, Remacle J F. Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities[J]. International Journal for Numerical Methods in Engineering, 2009, 79(11): 1309-1331. doi: 10.1002/nme.2579
|
| [16] |
Wimett T, Engle L, Graves G, et al. Time behavior of Godiva through prompt critical[R]. Los Alamos: Los Alamos Scientific Lab, 1956.
|
| [17] |
张驰, 周琦, 朱庆福, 等. 金属核燃料系统瞬态特性分析研究[J]. 原子能科学技术, 2016, 50(12):2170-2174 doi: 10.7538/yzk.2016.50.12.2170
Zhang Chi, Zhou Qi, Zhu Qingfu, et al. Transient characteristic analysis of nuclear metallic fuel system[J]. Atomic Energy Science and Technology, 2016, 50(12): 2170-2174 doi: 10.7538/yzk.2016.50.12.2170
|