Volume 37 Issue 2
Feb.  2025
Turn off MathJax
Article Contents
Ye Siyuan, Li Honglong, Li Yuehang, et al. Development of INSL-UniFoam: a multi-physics integrated criticality safety analysis program[J]. High Power Laser and Particle Beams, 2025, 37: 026001. doi: 10.11884/HPLPB202537.240369
Citation: Ye Siyuan, Li Honglong, Li Yuehang, et al. Development of INSL-UniFoam: a multi-physics integrated criticality safety analysis program[J]. High Power Laser and Particle Beams, 2025, 37: 026001. doi: 10.11884/HPLPB202537.240369

Development of INSL-UniFoam: a multi-physics integrated criticality safety analysis program

doi: 10.11884/HPLPB202537.240369
  • Received Date: 2024-10-22
  • Accepted Date: 2024-12-24
  • Rev Recd Date: 2024-12-24
  • Available Online: 2025-01-17
  • Publish Date: 2025-02-15
  • Fast Burst Reactors (FBRs) are important subjects for criticality safety analysis research. They are characterized by irregular geometry, strong transient processes, tight multi-physics coupling, and complex feedback characteristics. This paper introduces an OpenFOAM based multi-physics nuclear criticality safety analysis code named INSL-UniFoam. It integrates discrete ordinate neutron transport solver, heat transfer and stress-strain solvers to detailly model the prompt super-critical burst pulse of FBRs. The UniFoam is first verified in the Godiva-I benchmark under both the steady-state condition and several transient scenarios. The results demonstrate that the program aligns well with the reference solution in terms of Keff calculation, peak power, and fission yield. Furthermore, it is capable of comprehensively outputting the distributions of power, temperature, and stress-strain throughout the pulse process.
  • loading
  • [1]
    Kadioglu S Y, Knoll D A, De Oliveira C. Multiphysics analysis of spherical fast burst reactors[J]. Nuclear Science and Engineering, 2009, 163(2): 132-143. doi: 10.13182/NSE09-07
    [2]
    Briggs J B, Scott L, Nouri A. The international criticality safety benchmark evaluation project[J]. Nuclear Science and Engineering, 2003, 145(1): 1-10. doi: 10.13182/NSE03-14
    [3]
    Wimett T F. Los Alamos: Los Alamos Scientific Lab, 1965.
    [4]
    Aufiero M, Fiorina C, Laureau A, et al. Serpent–OpenFOAM coupling in transient mode: simulation of a Godiva prompt critical burst[C]//Proceedings of Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method. 2015.
    [5]
    Wilson S C, Biegalski S R, Coats R L. Computational modeling of coupled thermomechanical and neutron transport behavior in a Godiva-like nuclear assembly[J]. Nuclear science and engineering, 2007, 157(3): 344-353. doi: 10.13182/NSE06-28
    [6]
    高辉, 钟力晗, 梁文峰, 等. 基于反应性温度系数的金属型脉冲堆波形计算[J]. 原子能科学技术, 2017, 51(5):798-802 doi: 10.7538/yzk.2017.51.05.0798

    Gao Hui, Zhong Lihan, Liang Wenfeng, et al. Waveform calculation of metal burst reactors based on reactivity temperature coefficient[J]. Atomic Energy Science and Technology, 2017, 51(5): 798-802 doi: 10.7538/yzk.2017.51.05.0798
    [7]
    Fiorina C, Aufiero M, Pelloni S, et al. A time-dependent solver for coupled neutron-transport thermal-mechanics calculations and simulation of a Godiva prompt-critical burst[C]//Proceedings of the 2014 22nd International Conference on Nuclear Engineering. 2014.
    [8]
    郭树伟, 陈珍平, 江新标, 等. 金属核燃料快中子脉冲堆核-热-力耦合计算方法研究[J]. 核动力工程, 2022, 43(4):31-37

    Guo Shuwei, Chen Zhenping, Jiang Xinbiao, et al. Study on neutronic/thermal-mechanical coupling calculation method for fast-neutron pulse reactor with metallic nuclear fuel[J]. Nuclear Power Engineering, 2022, 43(4): 31-37
    [9]
    Wang Lipeng, Guo Shuwei, Hu Tianliang, et al. Transient simulation and parameter sensitivity analysis of Godiva experiment based on MOOSE platform[J]. Energies, 2023, 16(18): 6575. doi: 10.3390/en16186575
    [10]
    Blanco J A. Neutronic, thermohydraulic and thermomechanical coupling for the modeling of criticality accidents in nuclear systems[D]. Grenoble: Université Grenoble Alpes, 2020.
    [11]
    杨波. 离散纵标法求解含有各向异性散射的输运方程[D]. 绵阳: 中国工程物理研究院, 2005

    Yang Bo. Solution of transport equations with anisotropic scattering using the discrete ordinates method[D]. Mianyang: China Academy of Engineering Physics, 2005
    [12]
    Jasak H, Jemcov A, Tuković Z. OpenFOAM: a C++ library for complex physics simulations[C]//Proceedings of the International Workshop on Coupled Methods in Numerical Dynamics. 2007.
    [13]
    Eymard R, Gallouët T, Herbin R. Finite volume methods[J]. Handbook of Numerical Analysis, 2000, 7: 713-1018.
    [14]
    Peterson R, Newby G. Lady Godiva: an unreflected uranium-235 critical assembly[R]. Los Alamos: Los Alamos National Lab, 1953.
    [15]
    Geuzaine C, Remacle J F. Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities[J]. International Journal for Numerical Methods in Engineering, 2009, 79(11): 1309-1331. doi: 10.1002/nme.2579
    [16]
    Wimett T, Engle L, Graves G, et al. Time behavior of Godiva through prompt critical[R]. Los Alamos: Los Alamos Scientific Lab, 1956.
    [17]
    张驰, 周琦, 朱庆福, 等. 金属核燃料系统瞬态特性分析研究[J]. 原子能科学技术, 2016, 50(12):2170-2174 doi: 10.7538/yzk.2016.50.12.2170

    Zhang Chi, Zhou Qi, Zhu Qingfu, et al. Transient characteristic analysis of nuclear metallic fuel system[J]. Atomic Energy Science and Technology, 2016, 50(12): 2170-2174 doi: 10.7538/yzk.2016.50.12.2170
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(7)

    Article views (399) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return