Volume 37 Issue 4
Mar.  2025
Turn off MathJax
Article Contents
Ao Yu, Yang Dewen, Teng Yan, et al. A vacuum-sealed X-band repetitively pulsed high power microwave system[J]. High Power Laser and Particle Beams, 2025, 37: 043002. doi: 10.11884/HPLPB202537.240374
Citation: Ao Yu, Yang Dewen, Teng Yan, et al. A vacuum-sealed X-band repetitively pulsed high power microwave system[J]. High Power Laser and Particle Beams, 2025, 37: 043002. doi: 10.11884/HPLPB202537.240374

A vacuum-sealed X-band repetitively pulsed high power microwave system

doi: 10.11884/HPLPB202537.240374
  • Received Date: 2024-10-24
  • Accepted Date: 2025-01-21
  • Rev Recd Date: 2025-01-21
  • Available Online: 2025-02-12
  • Publish Date: 2025-04-15
  • Traditionally, bulky external vacuum pumps are used to obtain and maintain vacuum state of the high power microwave system, which significantly increase the size and weight of the system, and limit its practical application. To achieve lightweight and miniaturization of the high power microwave system and improve its practicality, a vacuum-sealed device is designed for X-band repetitively pulsed high power microwave system. Ceramic-metal brazing technology is used at the interface between the pulse transmission line and diode, as well as between the horn mouth of the microwave antenna and the air, while knife-edge sealing technology is used at other interfaces of the system, thus to achieve vacuum packaging inside the high power microwave generation, transmission, and emission cavity. By using methods of vacuum acquisition in the field of vacuum electronics, such as material surface cleaning and baking, the system can maintain a pressure of the order of 10−7 Pa for nearly 100 h in non-operating conditions. The non-evaporable getter pumps are installed on the cylinder of the diode and the horn of the microwave antenna, which can effectively capture the gas released in the cavity when the system is powered up and maintain vacuum dynamically. The experimental results show that the system can run more than 10 000 shots stably at the pulse repetition frequency of 10−30 Hz.
  • loading
  • [1]
    Friedman M, Fernsler R, Slinker S, et al. Efficient conversion of the energy of intense relativistic electron beams into rf waves[J]. Physical Review Letters, 1995, 75(6): 1214-1217. doi: 10.1103/PhysRevLett.75.1214
    [2]
    Eltchaninov A A, Korovin S D, Mesyats G A, et al. Review of studies of superradiative microwave generation in X band and Ka band relativistic BWOs[J]. IEEE Transactions on Plasma Science, 2004, 32(3): 1093-1099. doi: 10.1109/TPS.2004.828802
    [3]
    张余川, 孙钧, 邵浩, 等. 抑制表面场增强提高相对论返波管功率容量[J]. 强激光与粒子束, 2016, 28:033019 doi: 10.11884/HPLPB201628.033019

    Zhang Yuchuan, Sun Jun, Shao Hao, et al. Suppression of surface field enhancement to improve power capacity of RBWO[J]. High Power Laser and Particle Beams, 2016, 28: 033019 doi: 10.11884/HPLPB201628.033019
    [4]
    Grishin D M, Gubanov V P, Korovin S D, et al. High-power subnanosecond 38-GHz microwave pulses generated at a repetition rate of up to 3.5kHz[J]. Technical Physics Letters, 2002, 28: 806-809. doi: 10.1134/1.1519013
    [5]
    Zhang Jun, Jin Zhenxing, Yang Jianhua, et al. Recent advance in long-pulse HPM sources with repetitive operation in S-, C-, and X-bands[J]. IEEE Transactions on Plasma Science, 2011, 39(6): 1438-1445. doi: 10.1109/TPS.2011.2129536
    [6]
    曹亦兵, 孙钧, 宋志敏, 等. C波段长脉冲相对论返波管设计与实验[J]. 强激光与粒子束, 2018, 30:053004 doi: 10.11884/HPLPB201830.170470

    Cao Yibing, Sun Jun, Song Zhimin, et al. Design and experiment of long-pulse C-band relativistic backward wave oscillator[J]. High Power Laser and Particle Beams, 2018, 30: 053004 doi: 10.11884/HPLPB201830.170470
    [7]
    夏文锋, 张冬晓, 刘启晨, 等. 一种新型高功率轻小型化脉冲驱动源研制[J]. 现代应用物理, 2023, 14:030506

    Xia Wenfeng, Zhang Dongxiao, Liu Qichen, et al. A novel lightweight and miniaturized high power pulse drive source[J]. Modern Applied Physics, 2023, 14: 030506
    [8]
    伍友成, 冯传均, 付佳斌, 等. 基于PFN-Marx技术的紧凑型重频脉冲功率源[J]. 强激光与粒子束, 2024, 36:055019 doi: 10.11884/HPLPB202436.230354

    Wu Youcheng, Feng Chuanjun, Fu Jiabin, et al. A compact PFN-Marx repetitive pulsed power source[J]. High Power Laser and Particle Beams, 2024, 36: 055019 doi: 10.11884/HPLPB202436.230354
    [9]
    黎深根, 储开荣, 李冬凤, 等. 应用于高功率微波的速调管和正交场器件[J]. 现代应用物理, 2023, 14:030503

    Li Shengen, Chu Kairong, Li Dongfeng, et al. Klystron and crossed-field device for high power microwave applications[J]. Modern Applied Physics, 2023, 14: 030503
    [10]
    赵亮, 苏建仓, 李锐. 数十厘米长间隙真空绝缘研究进展[J]. 现代应用物理, 2023, 14:040104

    Zhao Liang, Su Jiancang, Li Rui. Research progress of vacuum insulation with tens of centimeters of long gaps[J]. Modern Applied Physics, 2023, 14: 040104
    [11]
    张亦弛, 蔡军, 冯进军. 高功率微波源的硬管化技术分析[J]. 真空电子技术, 2016, 29(6):20-26,71

    Zhang Yichi, Cai Jun, Feng Jinjun. Hard tube technology analysis of high power microwave sources[J]. Vacuum Electronics, 2016, 29(6): 20-26,71
    [12]
    王日品, 荀涛, 令钧溥, 等. 硬管保真空微波源脉冲放气的特性研究[C]//第八届全国脉冲功率技术学术交流会论文集. 2023: 817-824

    Wang Ripin, Xun Tao, Ling Junpu, et al. Study on the characteristics of pulse deflation of hard tube vacuum microwave source[C]//Proceedings of the 8th National Pulse Power Conference. 2023: 817-824
    [13]
    Parson J M, Lynn C F, Scott M C, et al. A frequency stable vacuum-sealed tube high-power microwave vircator operated at 500Hz[J]. IEEE Electron Device Letters, 2015, 36(5): 508-510. doi: 10.1109/LED.2015.2408216
    [14]
    Xun Tao, Fan Yuwei, Yang Hanwu, et al. A vacuum-sealed, gigawatt-class, repetitively pulsed high-power microwave source[J]. Journal of Applied Physics, 2017, 121: 234502. doi: 10.1063/1.4986632
    [15]
    荀涛, 王日品, 杨汉武, 等. 重频吉瓦高功率微波源硬管化技术研究进展[C]//第八届全国脉冲功率技术学术交流会论文集. 2023: 792-798

    Xun Tao, Wang Ripin, Yang Hanwu, et al. Research progress on hard tube technology of high-frequency gigawatt high-power microwave source[C]//Proceedings of the 8th National Pulse Power Conference. 2023: 817-824
    [16]
    肖仁珍. 相对论返波管研究进展[J]. 现代应用物理, 2022, 13:020101 doi: 10.12061/j.issn.2095-6223.2022.020101

    Xiao Renzhen. Research progress of relativistic backward wave oscillator[J]. Modern Applied Physics, 2022, 13: 020101 doi: 10.12061/j.issn.2095-6223.2022.020101
    [17]
    王利民. 固态直线变压器驱动源的探索研究[D]. 成都: 西南交通大学, 2022

    Wang Limin. Study on solid-state linear transformer driver[D]. Chengdu: Southwest Jiaotong University, 2022
    [18]
    徐成海, 陆国柱, 谈治信, 等. 真空设备选型与采购指南[M]. 北京: 化学工业出版社, 2013

    Xu Chenghai, Lu Guozhu, Tan Zhixin, et al. Selection and procurement guide for vacuum equipment[M]. Beijing: Chemical Industry Press, 2013
    [19]
    刘玉魁. 真空工程设计[M]. 北京: 化学工业出版社, 2016

    Liu Yukui. Design of vacuum engineering[M]. Beijing: Chemical Industry Press, 2016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views (737) PDF downloads(127) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return