留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大型激光装置脉冲波形调控技术

黄小霞 赵博望 郭怀文 周维 张波 田小程 张崑

黄小霞, 赵博望, 郭怀文, 等. 大型激光装置脉冲波形调控技术[J]. 强激光与粒子束, 2023, 35: 082001. doi: 10.11884/HPLPB202335.220320
引用本文: 黄小霞, 赵博望, 郭怀文, 等. 大型激光装置脉冲波形调控技术[J]. 强激光与粒子束, 2023, 35: 082001. doi: 10.11884/HPLPB202335.220320
Huang Xiaoxia, Zhao Bowang, Guo Huaiwen, et al. Autonomous pulse shaping method for high-power laser facility[J]. High Power Laser and Particle Beams, 2023, 35: 082001. doi: 10.11884/HPLPB202335.220320
Citation: Huang Xiaoxia, Zhao Bowang, Guo Huaiwen, et al. Autonomous pulse shaping method for high-power laser facility[J]. High Power Laser and Particle Beams, 2023, 35: 082001. doi: 10.11884/HPLPB202335.220320

大型激光装置脉冲波形调控技术

doi: 10.11884/HPLPB202335.220320
详细信息
    作者简介:

    黄小霞,wbsxiaoba@163.com

    通讯作者:

    郭怀文,guohw09@163.com

  • 中图分类号: O43

Autonomous pulse shaping method for high-power laser facility

  • 摘要: 精密高效的脉冲波形调控是大型激光装置满足惯性约束聚变实验需求的重要技术之一。脉冲波形生成原理是通过编辑任意波形发生器中每个子脉冲的电压值,经电光调制器转换为光脉冲强度形成任意形状的激光脉冲轮廓。在电光转换过程中,各子束响应过程并非线性且子束间存在个性差异。为实现此条件下精密高效的脉冲波形调控,制定并开发了基于闭环迭代思路的激光脉冲波形快速调控方法。实验结果表明,算法可在10 min内实现任意脉冲波形整形,并具备23∶1高对比度脉冲波形调控能力,调控精度均优于10% (rms),满足常规物理实验运行条件下对激光参数调控的精度和效率需求。
  • 图  1  脉冲堆积实现波形轮廓整形

    Figure  1.  Example of pulse generation by impulses summation

    图  2  不同数量子脉冲堆积的电光响应曲线

    Figure  2.  Response curves with different amount of electrical impulses in a single beam

    图  3  脉冲波形闭环流程

    Figure  3.  Closed-loop feedback process

    图  4  调整因子随偏差量的取值变化

    Figure  4.  Curves of scaling factor k

    图  5  利用基准时序脉冲对齐测量脉冲与目标波形

    Figure  5.  Timing benchmark pulse is adopted to align to goal pulse during iterations

    图  6  电信号经不同电缆传输后产生不同光脉冲响应

    Figure  6.  Pulse shape by using different cables

    图  7  三种脉冲波形的闭环结果

    Figure  7.  Typical shaped waveforms

  • [1] Nuckolls J, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities: thermonuclear (CTR) applications[J]. Nature, 1972, 239(5368): 139-142. doi: 10.1038/239139a0
    [2] Moses E I, Lindl J D, Spaeth M L, et al. Overview: development of the National Ignition Facility and the transition to a user facility for the ignition campaign and high energy density scientific research[J]. Fusion Science and Technology, 2016, 69(1): 1-24. doi: 10.13182/FST15-128
    [3] Betti R, Zhou C D, Anderson K S, et al. Shock ignition of thermonuclear fuel with high areal density[J]. Physical Review Letters, 2007, 98: 155001. doi: 10.1103/PhysRevLett.98.155001
    [4] Hurricane O A, Callahan D A, Casey D T, et al. Fuel gain exceeding unity in an inertially confined fusion implosion[J]. Nature, 2014, 506(7488): 343-348. doi: 10.1038/nature13008
    [5] Hurricane O A, Callahan D A, Casey D T, et al. The high-foot implosion campaign on the National Ignition Facility[J]. Physics of Plasmas, 2014, 21: 056314. doi: 10.1063/1.4874330
    [6] Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
    [7] Spaeth M L, Manes K R, Kalantar D H, et al. Description of the NIF Laser[J]. Fusion Science and Technology, 2016, 69(1): 25-145. doi: 10.13182/FST15-144
    [8] Spaeth M L, Manes K R, Bowers M, et al. National Ignition Facility laser system performance[J]. Fusion Science and Technology, 2016, 69(1): 366-394. doi: 10.13182/FST15-136
    [9] Denis V, Beau V, Le Deroff L, et al. The Laser Megajoule facility: laser performances and comparison with computational simulation[C]//Proceedings of SPIE 10084, High Power Lasers for Fusion Research IV. 2017: 100840I.
    [10] Di Nicola J M, Bond T, Bowers M, et al. The National Ignition Facility: laser performance status and performance quad results at elevated energy[J]. Nuclear Fusion, 2019, 59: 032004. doi: 10.1088/1741-4326/aac69e
    [11] Brunton G, Erbert G, Browning D, et al. The shaping of a national ignition campaign pulsed waveform[J]. Fusion Engineering and Design, 2012, 87(12): 1940-1944. doi: 10.1016/j.fusengdes.2012.09.019
    [12] Hu Dongxia, Dong Jun, Xu Dangpeng, et al. Generation and measurement of complex laser pulse shapes in the SG-III laser facility[J]. Chinese Optics Letters, 2015, 13: 041406. doi: 10.3788/COL201513.041406
    [13] Rothenberg J E, Browning D F, Wilcox R B. Issue of FM to AM conversion on the National Ignition Facility[C]//Proceedings of SPIE 3492, Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion. 1999: 51-61.
    [14] Hocquet S, Penninckx D, Bordenave E, et al. FM-to-AM conversion in high-power lasers[J]. Applied Optics, 2008, 47(18): 3338-3349. doi: 10.1364/AO.47.003338
    [15] Huang Xiaoxia, Deng Xuewei, Zhou Wei, et al. FM-to-AM modulations induced by a weak residual reflection stack of sine-modulated pulses in inertial confinement fusion laser systems[J]. Laser Physics, 2018, 28: 025001. doi: 10.1088/1555-6611/aa962c
    [16] Renka R J. Nonlinear least squares and Sobolev gradients[J]. Applied Numerical Mathematics, 2013, 65: 91-104. doi: 10.1016/j.apnum.2012.12.002
  • 加载中
图(7)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  135
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-14
  • 修回日期:  2023-04-16
  • 录用日期:  2023-03-29
  • 网络出版日期:  2023-05-15
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回