留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光驱动尾波场加速电子诱导光核嬗变

王岩成 曹宗威 孙向阳 罗文

王岩成, 曹宗威, 孙向阳, 等. 激光驱动尾波场加速电子诱导光核嬗变[J]. 强激光与粒子束, 2023, 35: 091006. doi: 10.11884/HPLPB202335.230079
引用本文: 王岩成, 曹宗威, 孙向阳, 等. 激光驱动尾波场加速电子诱导光核嬗变[J]. 强激光与粒子束, 2023, 35: 091006. doi: 10.11884/HPLPB202335.230079
Wang Yancheng, Cao Zongwei, Sun Xiangyang, et al. Study of photo-transmutation induced by laser wakefield accelerated electrons[J]. High Power Laser and Particle Beams, 2023, 35: 091006. doi: 10.11884/HPLPB202335.230079
Citation: Wang Yancheng, Cao Zongwei, Sun Xiangyang, et al. Study of photo-transmutation induced by laser wakefield accelerated electrons[J]. High Power Laser and Particle Beams, 2023, 35: 091006. doi: 10.11884/HPLPB202335.230079

激光驱动尾波场加速电子诱导光核嬗变

doi: 10.11884/HPLPB202335.230079
基金项目: 国家重点研发项目(2022YFA1603300)、国家自然科学基金项目(U2230133、U2241281)
详细信息
    作者简介:

    王岩成,1373994584@qq.com

    通讯作者:

    罗 文 , wenluo-ok@163.com

  • 中图分类号: O571

Study of photo-transmutation induced by laser wakefield accelerated electrons

  • 摘要: 提出了一种基于激光尾波场加速电子诱导光核嬗变的优化方案并开展了135Cs光核嬗变的数值模拟研究。蒙特卡罗模拟研究发现随着电子能量的增加,嬗变产额逐渐趋于饱和,单位能量电子的嬗变效率在40 MeV附近时存在峰值,半高处能量为20、120 MeV。为了提升半高处能量内的电子电量从而优化嬗变产额,使用粒子模拟程序研究了超短超强激光在气体等离子体中的传输过程。研究结果发现,随着等离子体密度的降低,尾波场加速的电子能量逐渐升高,但是电荷量逐渐减少,并且圆偏振激光加速的电子能量和电荷量均优于线偏振激光。通过调整等离子体密度和激光偏振,发现在圆偏振激光和特定等离子体密度条件下,存在嬗变产额的最优值。利用电导率等效方法对345 GHz折叠波导行波管中的电磁信号的传输损耗进行了仿真研究,考察了流通管孔径、加工粗糙度等对冷腔传输损耗的影响,流通管孔径较大或加工粗糙度较大都会导致电磁信号传输衰减严重。还模拟分析了热腔中电磁信号衰减对慢波结构净增益、带宽、最佳周期数等器件特征参数的影响,结果显示,电磁信号衰减会使得增益下降和带宽降低。
  • 图  1  135Cs光核嬗变示意图

    Figure  1.  Photo-transmutation of 135Cs

    图  2  嬗变靶厚度为3 mm,6 mm,10 mm时不同电子能量的嬗变产额与嬗变效率

    Figure  2.  Transmutation yield and transmutation efficiency of different electron energy at the target thickness of 3 mm, 6 mm and 10 mm

    图  3  线偏振激光与不同密度气体作用的电子加速图像

    Figure  3.  Electron acceleration images of linearly polarized laser acting with gas of different densities

    图  4  线偏振激光与不同密度气体作用产生的电子能谱

    Figure  4.  Electron energy spectrum generated by the action of linearly polarized laser with gas of different densities

    图  5  不同偏振激光与气体作用产生的准静态轴向磁场

    Figure  5.  Quasistatic axial magnetic field generated by the interaction of different polarization laser light and gas

    图  6  圆偏振激光与不同密度气体作用产生的电子能谱和总电荷量

    Figure  6.  Electron energy spectrum and total charge generated by the action of circularly polarized laser with different densities

    图  7  不同激光偏振下的嬗变产额和总能量与气体密度的依赖关系

    Figure  7.  Dependence of transmutation yield and total energy with gas density at different laser polarization

  • [1] Kailas S, Hemalatha M, Saxena A. Nuclear transmutation strategies for management of long-lived fission products[J]. Pramana, 2015, 85(3): 517-523. doi: 10.1007/s12043-015-1063-z
    [2] Yang W S, Kim Y, Hill R N, et al. Long-lived fission product transmutation studies[J]. Nuclear Science and Engineering, 2004, 146(3): 291-318. doi: 10.13182/NSE04-A2411
    [3] Nakamura S, Furutaka K, Wada H, et al. Measurement of the thermal neutron capture cross section and the resonance integral of the 90Sr(n, γ)91Sr reaction[J]. Journal of Nuclear Science and Technology, 2001, 38(12): 1029-1034. doi: 10.1080/18811248.2001.9715132
    [4] Sadighi S K, Sadighi-Bonabi R. The evaluation of transmutation of hazardous nuclear waste of 90Sr, into valuable nuclear medicine of 89Sr by ultrantense lasers[J]. Laser and Particle Beams, 2010, 28(2): 269-276. doi: 10.1017/S0263034610000145
    [5] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494. doi: 10.1038/187493a0
    [6] Mourou G, Umstadter D. Development and applications of compact high-intensity lasers[J]. Physics of Fluids B: Plasma Physics, 1992, 4(7): 2315-2325. doi: 10.1063/1.860202
    [7] Amiranoff F, Baton S, Bernard D, et al. Observation of laser wakefield acceleration of electrons[J]. Physical Review Letters, 1998, 81(5): 995-998. doi: 10.1103/PhysRevLett.81.995
    [8] Pukhov A, Meyer-Ter-Vehn J. Laser wake field acceleration: the highly non-linear broken-wave regime[J]. Applied Physics B, 2002, 74(4/5): 355-361.
    [9] Shkolnikov P L, Kaplan A E, Pukhov A, et al. Positron and gamma-photon production and nuclear reactions in cascade processes initiated by a sub-terawatt femtosecond laser[J]. Applied Physics Letters, 1997, 71(24): 3471-3473. doi: 10.1063/1.120362
    [10] Magill J, Schwoerer H, Ewald F, et al. Laser transmutation of iodine-129[J]. Applied Physics B, 2003, 77(4): 387-390. doi: 10.1007/s00340-003-1306-4
    [11] Ledingham K W D, Magill J, McKenna P, et al. Laser-driven photo-transmutation of 129I—a long-lived nuclear waste product[J]. Journal of Physics D: Applied Physics, 2003, 36(18): L79-L82. doi: 10.1088/0022-3727/36/18/L01
    [12] Tajima T, Dawson J M. An electron accelerator using a laser[J]. IEEE Transactions on Nuclear Science, 1979, 26(3): 4188-4189. doi: 10.1109/TNS.1979.4330739
    [13] Malka V, Fritzler S, Lefebvre E, et al. Electron acceleration by a wake field forced by an intense ultrashort laser pulse[J]. Science, 2002, 298(5598): 1596-1600. doi: 10.1126/science.1076782
    [14] Geddes C G R, Toth C, Van Tilborg J, et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding[J]. Nature, 2004, 431(7008): 538-541. doi: 10.1038/nature02900
    [15] Faure J, Rechatin C, Norlin A, et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses[J]. Nature, 2006, 444(7120): 737-739. doi: 10.1038/nature05393
    [16] Lu W, Tzoufras M, Joshi C, et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime[J]. Physical Review Special Topics - Accelerators and Beams, 2007, 10: 061301. doi: 10.1103/PhysRevSTAB.10.061301
    [17] Wang X L, Xu Z Y, Luo W, et al. Transmutation prospect of long-lived nuclear waste induced by high-charge electron beam from laser plasma accelerator[J]. Physics of Plasmas, 2017, 24: 093105. doi: 10.1063/1.4998470
    [18] Kim H T, Pathak V B, Hojbota C I, et al Multi-GeV laser wakefield electron acceleration with PW lasers[J]. Applied Sciences, 2021, 11: 5831.
    [19] Agostinelli S, Allison J, Amako K, et al. GEANT4—a simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 506(3): 250-303.
    [20] Hosokai T, Kinoshita K, Zhidkov A, et al. Effect of external static magnetic field on the emittance and total charge of electron beams generated by laser-wakefield acceleration[J]. Physical Review Letters, 2006, 97: 075004. doi: 10.1103/PhysRevLett.97.075004
    [21] Hur M S, Gupta D N, Suk H. Enhanced electron trapping by a static longitudinal magnetic field in laser wakefield acceleration[J]. Physics Letters A, 2008, 372(15): 2684-2687. doi: 10.1016/j.physleta.2007.12.045
    [22] Vieira J, Martins S F, Pathak V B, et al. Magnetic control of particle injection in plasma based accelerators[J]. Physical Review Letters, 2011, 106: 225001. doi: 10.1103/PhysRevLett.106.225001
    [23] Liu Hong, He Xiantu, Chen S G. Resonance acceleration of electrons in combined strong magnetic fields and intense laser fields[J]. Physical Review E, 2004, 69: 066409. doi: 10.1103/PhysRevE.69.066409
  • 加载中
图(7)
计量
  • 文章访问数:  458
  • HTML全文浏览量:  186
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-07
  • 修回日期:  2023-05-15
  • 录用日期:  2023-04-25
  • 网络出版日期:  2023-05-31
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回