留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时基反馈控制的Tesla变压器初级电源

乔汉青 樊亚军 夏文锋 张兴家 卢彦雷 关锦清

乔汉青, 樊亚军, 夏文锋, 等. 时基反馈控制的Tesla变压器初级电源[J]. 强激光与粒子束, 2018, 30: 085005. doi: 10.11884/HPLPB201830.170526
引用本文: 乔汉青, 樊亚军, 夏文锋, 等. 时基反馈控制的Tesla变压器初级电源[J]. 强激光与粒子束, 2018, 30: 085005. doi: 10.11884/HPLPB201830.170526
Qiao Hanqing, Fan Yajun, Xia Wenfeng, et al. Time-base feedback controlled primary source of Tesla transformer[J]. High Power Laser and Particle Beams, 2018, 30: 085005. doi: 10.11884/HPLPB201830.170526
Citation: Qiao Hanqing, Fan Yajun, Xia Wenfeng, et al. Time-base feedback controlled primary source of Tesla transformer[J]. High Power Laser and Particle Beams, 2018, 30: 085005. doi: 10.11884/HPLPB201830.170526

时基反馈控制的Tesla变压器初级电源

doi: 10.11884/HPLPB201830.170526
详细信息
    作者简介:

    乔汉青(1986—), 男, 博士研究生, 主要从事脉冲功率技术研究; qiaohanqing@nint.ac.cn

  • 中图分类号: TM89

Time-base feedback controlled primary source of Tesla transformer

  • 摘要: LC谐振充电是Tesla变压器常用的初级电容充电技术,但存在对控制时序要求高、易受电磁干扰和不具备故障保护能力等缺陷。针对这个问题,提出了一种时基反馈控制的LC谐振充电电源。该电源与传统LC谐振电源的主要区别在于,采用特殊设计的时基反馈电路取代多路时基控制器,将能量回收开关反向阻断瞬间的电压突变调制为谐振晶闸管触发信号,从而在能量回收结束时刻启动谐振充电,实现各工作回路准确按照预定时序运行。时基反馈电路由高压元件构成,不易受电磁干扰,且在原理上具备负载短路保护能力。该技术已经应用于CKP1000,CKP5000等多台Tesla型超宽谱脉冲源。实验结果表明,在强脉冲辐射环境下,该电源能够1000 Hz重频稳定运行,且能够在Tesla变压器初级短路故障时进行快速自动保护。
  • 图  1  典型LC谐振电源原理图

    Figure  1.  Principle of typical LC resonance capacity charging power supply (CCPS)

    图  2  时基反馈控制的LC谐振电源的原理图

    Figure  2.  Principle of time-base feedback controlled LC resonance CCPS

    图  3  时基反馈的谐振充电电源节点波形示意图

    Figure  3.  Waveform of time-base feedback controlled LC resonance CCPS

    图  4  电源工作波形

    Figure  4.  Waveforms of the CCPS

    图  5  时基反馈电路输出电流

    Figure  5.  Output current of the feedback circuit

    图  6  电源1000 Hz重频波形

    Figure  6.  Waveform of the CCPS with repetition rate of 1000 Hz

    图  7  电源短路故障保护波形

    Figure  7.  Waveform of output short-circuit protection

  • [1] 石磊, 朱郁丰, 卢彦雷, 等. 紧凑Tesla变压器型纳秒脉冲源[J]. 强激光与粒子束, 2014, 26: 125001. doi: 10.11884/HPLPB201426.125001

    Shi Lei, Zhu Yufeng, Lu Yanlei, et al. Compact GW nanosecond pulse generator based on Tesla transformer. High Power Laser and Particle Beams, 2014, 26: 125001 doi: 10.11884/HPLPB201426.125001
    [2] 彭建昌, 苏建仓, 宋晓欣, 等. 40 GW重复频率脉冲驱动源研制进展[J]. 强激光与粒子束, 2010, 22(4): 712-716. http://www.hplpb.com.cn/article/id/4717

    Peng Jianchang, Su Jiancang, Song Xiaoxin, et al. Progress on a 40 GW repetitive pulsed accelerator. High Power Laser and Particle Beams, 2010, 22(4): 712-716 http://www.hplpb.com.cn/article/id/4717
    [3] Rishi V, Anurag S, Tushar P, et al. Short pulse high power microwave generation from an axially extracted virtual cathode oscillator[C]//Proc of the 2011 IEEE International Vacuum Electronics Conference (IVEC). 2011: 491-492.
    [4] Mesyats G A, Korovin S D, Rostov V V, et al. The RADAN series of compact pulsed power generators and their applications[C]//Proc of the 2004 IEEE Pulsed Power Conference. 2004: 1166-1179.
    [5] 樊亚军. 高功率亚纳秒电磁脉冲产生[D]. 西安: 西安交通大学, 2004.

    Fan Yajun. Generation of high power sub-nanosecond electromagnetic pulses. Xi'an: Xi'an Jiaotong University, 2004
    [6] Gubanov V P, Korovin S D, Pegel I V, et al. Compact 1000 pps high-voltage nanosecond pulse generator[J]. IEEE Trans Plasma Science, 1997, 25(2): 258-265.
    [7] Soung S P, Sang H K, Sung C K, et al. Operational status and stability improvement of klystron-modulator system for PAL 2.5-GeV electron linac[C]//Proc of the 27th International Power Modulator Symposium. 2006: 298-301.
    [8] Jiang W H, Matsuda T, Yatsui K, et al. High repetition-rate, low jitter pulsed power generator for excimer laser applications[C]//Proc of the 25th International Power Modulator Symposium and High-Voltage Workshop. 2002: 605-607.
    [9] 李伟, 刘庆想, 张政权, 等. 基于高频交流链接技术的大功率高压直流电源[J]. 电力电子技术, 2016, 41(16): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201616009.htm

    Li Wei, Liu Qing-xiang, Zhang Zhengquan, et al. High power high voltage DC power supply based on series-resonant high frequency AC link technology. Power Electronics, 2016, 41(16): 65-71 https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201616009.htm
    [10] 张自成, 张建德, 杨汉武, 等. 脉冲功率加速器重频运行的稳压理论分析[J]. 强激光与粒子束, 2008, 22(9): 1580-1584. http://www.hplpb.com.cn/article/id/3678

    Zhang Zicheng, Zhang Jiande, Yang Hanwu, et al. Stability theory in repetitive mode for compact accelerator. High Power Laser and Particle Beams, 2008, 22(9): 1580-1584 http://www.hplpb.com.cn/article/id/3678
    [11] 陈俊, 杨建华, 舒挺, 等. 储能电容方式驱动强流脉冲加速器重频运行[J]. 强激光与粒子束, 2008, 20(8): 1405-1408. http://www.hplpb.com.cn/article/id/3637

    Chen Jun, Yang Jianhua, Shu Ting, et al. Primary power supply of repetitive pulsed intense current accelerator charged by capacitance of energy store. High Power Laser and Particle Beams, 2008, 20(8): 1405-1408 http://www.hplpb.com.cn/article/id/3637
    [12] 李亚维, 邓建军, 谢敏, 等. 800 kV/100 Hz高功率微波驱动电源控制系统[J]. 高电压技术, 2009, 35(6): 1426-1429. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200906033.htm

    Li Yawei, Deng Jianjun, Xie Min, et al. Control system of 800 kV/100 Hz high power microwave power supply. High Voltage Engineering, 2009, 35(6): 1426-1429 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200906033.htm
  • 加载中
图(7)
计量
  • 文章访问数:  1086
  • HTML全文浏览量:  254
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-27
  • 修回日期:  2018-05-07
  • 刊出日期:  2018-08-15

目录

    /

    返回文章
    返回