Volume 30 Issue 3
Mar.  2018
Turn off MathJax
Article Contents
Dong Ye, Liu Qingxiang, Li Xiangqiang, et al. Configuration design and dynamic process study of novel multipacting cathode[J]. High Power Laser and Particle Beams, 2018, 30: 033001. doi: 10.11884/HPLPB201830.170328
Citation: Dong Ye, Liu Qingxiang, Li Xiangqiang, et al. Configuration design and dynamic process study of novel multipacting cathode[J]. High Power Laser and Particle Beams, 2018, 30: 033001. doi: 10.11884/HPLPB201830.170328

Configuration design and dynamic process study of novel multipacting cathode

doi: 10.11884/HPLPB201830.170328
  • Received Date: 2017-08-27
  • Rev Recd Date: 2017-11-20
  • Publish Date: 2018-03-15
  • In this paper, the configuration design of a novel multipacting cathode driven by pulsed power source is put forward and its dynamic process is theoretically investigated in detail. Firstly, the dynamic model is established for this novel multipacting cathode, the displacement and velocity expressions are obtained by solving the dynamic equation of secondary electrons. The influences of electron with different initial energy emitted from each direction on electron trajectory, velocity, and impact energy are discussed. The approximate expressions of electron transit time and impact energy are obtained and discussed theoretically. Secondly, to find the multipacting cathode working range, the multipacting susceptibility diagram is obtained and discussed in detail by solving electron dynamic equation coupling Vaughan's empirical formula (secondary electron yield model). Theoretical results demonstrate that the conception of the novel multipacting cathode is feasible. By applying an appropriate electric field (about MV/m) in axial and radial directions and a proper magnetic field (T) in axial direction on a cylindrical dielectric surface coated by high secondary emission yield coefficient material, the electrons move with spiral trajectories along axial direction. Electron number could be increased effectively by each impact with multipacting interaction. This phenomenon could achieve electron current amplification until multipacting comes to saturation. Finally, the deposit phenomenon of positive charges and multipacting saturation are analyzed and discussed. The roughly theoretical estimation indicates that the novel multipacting cathode has the performance of high emission current density, and the emission current density can run up to the level of kA/cm2. Enhancing the magnitude of applied electrostatic field in radial direction can effectively improve the emission current density.
  • loading
  • [1]
    Farnsworth P T. Television by electron image scanning[J]. J Franklin Inst, 1934, 218 (4): 411-444. doi: 10.1016/S0016-0032(34)90415-4
    [2]
    Vaughan J R M. A new formula for secondary emission yield[J]. IEEE Trans Electron Devices, 1989, 36 (9): 1963-1967.
    [3]
    Furman M A, Pivi M T F. Probabilistic model for the simulation of secondary electron emission[J]. Phys Rev Special Topics Accel Beams, 2002, 5: 124404.
    [4]
    Vaughan J R M. Multipactor[J]. IEEE Trans Electron Devices, 1988, 35 (7): 1172-1180.
    [5]
    Kishek R A, Lau Y Y, et al. Multipactor discharge on metals and dielectrics: Historical review and recent theories[J]. Phys Plasmas, 1998, 5 (5): 2120-2126. doi: 10.1063/1.872883
    [6]
    Kim H C, Verboncoeur J P. Time-dependent physics of a single-surface multipactor discharge[J]. Phys Plasmas, 2005, 12: 123504.
    [7]
    Foster J, Krompholz H, Neuber A. Statistical analysis of high power microwave surface flashover delay times in nitrogen with metallic field enhancements[J]. Phys Plasmas, 2011, 18: 113505. doi: 10.1063/1.3662108
    [8]
    Perkins M P, Houck T L, Javedani J B, et al, Progress on simulating the initiation of vacuum insulator flashover[C]//Proc 17th IEEE Int Pulsed Power Conf. 2009: 441-446.
    [9]
    Neuber A, Butcher M, Hatfield L L, et al. Electric current in dc surface flashover in vacuum[J]. J Appl Phy, 1999, 85 (6): 3084-3091. doi: 10.1063/1.369647
    [10]
    Liu Y S, Zhang G J, Zhao W B, et al. Analysis on surface charging of insulator prior to flashover in vacuum[J]. Applied Surface Science, 2004, 230 (1): 12-17.
    [11]
    程国新, 程新兵, 刘列, 等. 刻槽绝缘子真空表面闪络特性分析[J]. 强激光与粒子束, 2012, 24 (4): 801-805. doi: 10.3788/HPLPB20122404.0801

    Cheng Guoxin, Cheng Xinbing, Liu Lie, et al. Vacuum surface flashover of grooved dielectrics. High Power Laser and Particle Beams, 2012, 24 (4): 801-805 doi: 10.3788/HPLPB20122404.0801
    [12]
    Cai L B, Wang J G, Zhang D H, et al. Self-consistent simulation of the initiation of the flashover discharge on vacuum insulator surface[J]. Phys Plasmas, 2012, 19 : 073516.
    [13]
    王勐, 丁伯南, 谢卫平. 多层长渡越时间轴向绝缘堆的闪络概率分析[J]. 强激光与粒子束, 2004, 16 (7): 934-938. http://www.hplpb.com.cn/article/id/640

    Wang Meng, Ding Bonan, Xie Weiping. Flashover probability analysis of vacuum insulator stack with many stages and large transit time. High Power Laser and Particle Beams, 2004, 16 (7): 934-938 http://www.hplpb.com.cn/article/id/640
    [14]
    Barker R J, Schamiloglu E. 高功率微波源与技术[M]. 北京: 清华大学出版社, 2005.

    Barker R J, Schamiloglu E. High-power microwaves sources and technologies. Beijing: Tsinghua University Press, 2005
    [15]
    Mako F M. Electron gun for producing incident and secondary electrons: 7285915[P]. 2007-10-23.
    [16]
    翟纪元, 唐传祥, 郑曙昕. 微脉冲电子枪动力学实验研究[J]. 高能物理与核物理, 2006, 30 (s1): 99-101. https://www.cnki.com.cn/Article/CJFDTOTAL-KNWL2006S1033.htm

    Zhai Jiyuan, Tang Chuanxiang, Zheng Shuxin. Experimental study on the beam dynamics of the micro-pulse electron gun. High Energy Physics and Nuclear Physics, 2006, 30 (s1): 99-101 https://www.cnki.com.cn/Article/CJFDTOTAL-KNWL2006S1033.htm
    [17]
    孙红兵, 裴元吉, 谢爱根, 等. 二次发射微波电子枪的倍增特性[J]. 强激光与粒子束, 2004, 16 (11): 1477-1480. http://www.hplpb.com.cn/article/id/495

    Sun Hongbing, Pei Yuanji, Xie Aigen, et al. Multiplication effect of the secondary emission microwave electron gun. High Power Laser and Particle Beams, 2004, 16 (11): 1477-1480 http://www.hplpb.com.cn/article/id/495
    [18]
    杨兴繁, 许州, 刘锡三, 等. 微脉冲电子枪理论分析与实验设计[R]. 中国核科技报告, 2002: 143-152.

    Yang Xingfan, Xu Zhou, Liu Xisan, et al. Analysis and experimental design of micro-pulse gun. China Nuclear Science and Technology Report, 2002: 143-152
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article views (1779) PDF downloads(199) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return