Volume 33 Issue 4
May  2021
Turn off MathJax
Article Contents
Rao Junfeng, Yang Shilong, Wang Yonggang, et al. Research on automatic control of solid state Marx generator[J]. High Power Laser and Particle Beams, 2021, 33: 045003. doi: 10.11884/HPLPB202133.200328
Citation: Rao Junfeng, Yang Shilong, Wang Yonggang, et al. Research on automatic control of solid state Marx generator[J]. High Power Laser and Particle Beams, 2021, 33: 045003. doi: 10.11884/HPLPB202133.200328

Research on automatic control of solid state Marx generator

doi: 10.11884/HPLPB202133.200328
  • Received Date: 2020-12-09
  • Rev Recd Date: 2021-03-18
  • Available Online: 2021-03-30
  • Publish Date: 2021-05-02
  • To further promote the application of solid-state Marx generators, enable them with the visual display of output pulse waveforms, more accurate regulation of voltage, and shorter charging regulation time, it is necessary to study the automatic control of solid-state Marx generator. In this paper, with a field programmable gate array (FPGA) as the controller, the output voltage, frequency, pulse width, overcurrent threshold value, and other parameters, as well as fault detection and indication, are all directly displayed on the LCD screen to realize visible settings and adjustment. In solid-state Marx generators, a voltage dividing circuit in parallel with the output and a high-speed analog-digital conversion circuit is used to realize high-voltage pulse sampling of the output. With these sampled voltage values, on the one hand, the closed-loop segmented PID control can be realized to achieve fast charging and precise adjustment of the output voltage. On the other hand, the basic waveform of the real-time pulses can be displayed in the virtual oscilloscope. Besides, fault detection and protection mechanisms have been added to the circuit to quickly detect over-temperature, overcurrent, and other faults in the circuit and respond to their timely shutdown to protect the pulse generators and the operators. The voltage waveforms of repetitive square pulses generated by the topology of a 20-stage solid-state square Marx generator indicate that the basic automatical control of this solid-state Marx generator has been realized and it can operate reliably.
  • loading
  • [1]
    刘克富. 固态Marx发生器研究进展[J]. 高电压技术, 2015, 41(6):1781-1787. (Liu Kefu. Research progress in solid-state Marx generators[J]. High Voltage Engineering, 2015, 41(6): 1781-1787
    [2]
    饶俊峰, 姜松, 李孜. 基于Marx和磁开关的方波脉冲电源的研制[J]. 强激光与粒子束, 2016, 28:055005. (Rao Junfeng, Jiang Song, Li Zi. Rectangular pulse generator based on Marx and magnetic switch[J]. High Power Laser and Particle Beams, 2016, 28: 055005 doi: 10.11884/HPLPB201628.055005
    [3]
    Liu Kefu, Qiu Jian, Wu Yifan, et al. An all solid-state pulsed power generator based on Marx generator[C]//Proceedings of the 2007 16th IEEE International Pulsed Power Conference. 2007: 720-723.
    [4]
    Redondo L M, Silva J F. Repetitive high-voltage solid-state Marx modulator design for various load conditions[J]. IEEE Transactions on Plasma Science, 2009, 37(8): 1632-1637. doi: 10.1109/TPS.2009.2023221
    [5]
    江伟华. 基于固态器件的高重频脉冲功率技术[J]. 强激光与粒子束, 2010, 22(3):561-564. (Jiang Weihua. High repetition-rate pulsed power generation using solid-state switches[J]. High Power Laser and Particle Beams, 2010, 22(3): 561-564 doi: 10.3788/HPLPB20102203.0561
    [6]
    Wei L S, Yuan D K, Zhang Y F, et al. Experimental and theoretical study of ozone generation in pulsed positive dielectric barrier discharge[J]. Vacuum, 2014, 104: 61-64. doi: 10.1016/j.vacuum.2014.01.009
    [7]
    Rao Junfeng, Lei Yang, Jiang Song, et al. All solid-state rectangular sub-microsecond pulse generator for water treatment application[J]. IEEE Transactions on Plasma Science, 2018, 46(10): 3359-3363. doi: 10.1109/TPS.2018.2829206
    [8]
    姚陈果, 郭飞, 董守龙, 等. 纳秒脉冲处理A375细胞裸鼠皮下移植瘤的疗效评估[J]. 高电压技术, 2013, 39(1):117-121. (Yao Chenguo, Guo Fei, Dong Shoulong, et al. Treatment effect assessment of A375 cell subcutaneous transplantable tumor in nude mouse with nanosecond pulsed electric fields[J]. High Voltage Engineering, 2013, 39(1): 117-121 doi: 10.3969/j.issn.1003-6520.2013.01.017
    [9]
    Akiyama M, Shiraishi E, Sakugawa T, et al. Influence of 60 ns pulsed electric fields on embryonic stem cells[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(4): 1119-1123. doi: 10.1109/TDEI.2011.5976104
    [10]
    卢新培. 等离子体射流及其医学应用[J]. 高电压技术, 2011, 37(6):1416-1425. (Lu Xinpei. Plasma jets and their biomedical application[J]. High Voltage Engineering, 2011, 37(6): 1416-1425
    [11]
    Pereira F, Gomes L, Redondo L M. Multifunctional controller architecture for solid-state Marx modulator based on FPGA[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 2991-2997. doi: 10.1109/TPS.2014.2320409
    [12]
    Pereira F, Gomes L, Redondo L. FPGA controller for power converters with integrated oscilloscope and graphical user interface[C]//Proceedings of the 2011 International Conference on Power Engineering, Energy and Electrical Drives. 2011.
    [13]
    饶俊峰, 洪凌锋, 郭龙跃, 等. 多路Marx并联高压脉冲电源研究[J]. 强激光与粒子束, 2020, 32:055001. (Rao Junfeng, Hong Lingfeng, Guo Longyue, et al. Investigation of high voltage pulse generators with Marx generators in parallel[J]. High Power Laser and Particle Beams, 2020, 32: 055001
    [14]
    Li Zi, Liu Haotian, Jiang Song, et al. A novel drive circuit with overcurrent protection for solid state pulse generators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 361-366. doi: 10.1109/TDEI.2018.007701
    [15]
    Zhou Ziwei, Li Zi, Rao Junfeng, et al. A high-performance drive circuit for all solid-state Marx generator[J]. IEEE Transactions on Plasma Science, 2016, 44(11): 2779-2784. doi: 10.1109/TPS.2016.2577704
    [16]
    高景明, 刘永贵, 杨建华. 一种电容补偿型高压电容分压器的设计[J]. 高电压技术, 2007, 33(6):76-79. (Gao Jingming, Liu Yonggui, Yang Jianhua. Design of capacitance-compensated capacitive divider for high-voltage pulse measurement[J]. High Voltage Engineering, 2007, 33(6): 76-79 doi: 10.3969/j.issn.1003-6520.2007.06.019
    [17]
    Zong Wenzhi, Li Yue, Cheng Yangchun, et al. The design of a wide-band high-voltage divider[C]//Proceedings of the 2010 International Conference on Power System Technology. 2010: 1-5.
    [18]
    Chan Y F, Moallem M, Wang Wei. Design and implementation of modular FPGA-based PID controllers[J]. IEEE Transactions on Industrial Electronics, 2007, 54(4): 1898-1906. doi: 10.1109/TIE.2007.898283
    [19]
    Tzafestas S, Papanikolopoulos N P. Incremental fuzzy expert PID control[J]. IEEE Transactions on Industrial Electronics, 1990, 37(5): 365-371. doi: 10.1109/41.103431
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)

    Article views (1602) PDF downloads(140) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return