| Citation: | Shang Jianli, Wang Juntao, Peng Wanjing, et al. Research progress and prospects of laser diode pumped high-energy laser[J]. High Power Laser and Particle Beams, 2022, 34: 011007. doi: 10.11884/HPLPB202234.210530 |
| [1] |
孙承纬. 激光辐照效应[M]. 北京: 国防工业出版社, 2002
Sun Chengwei. Laser irradiation effect[M]. Beijing: National Defense Industry Press, 2002
|
| [2] |
宋宏伟, 黄晨光. 激光辐照诱导的热与力学效应[J]. 力学进展, 2016, 46(1):435-477
Song Hongwei, Huang Chenguang. Progress in thermal-mechanical effects induced by laser[J]. Advances in Mechanics, 2016, 46(1): 435-477
|
| [3] |
Marmo J, Injeyan H, Komine H, et al. Joint high power solid state laser program advancements at Northrop Grumman[C]//Proceedings of SPIE 7195, Fiber Lasers VI: Technology, Systems, and Applications. 2009: 719507.
|
| [4] |
Mcnaught S J, Asman C P, Injeyan A, et al. 100-kW coherently combined Nd: YAG MOPA laser array[C]//Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical Digest. 2009: 321-334.
|
| [5] |
Chen Junchi, Li Jiang, Xu Jialin, et al. 4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd: YAG slab laser[J]. Optics & Laser Technology, 2014, 63: 50-53.
|
| [6] |
郭亚丁. 高能固体激光自适应光学光束质量控制[C]//第四届大气光学及自适应光学技术发展研讨会. 2019
Guo Yading. Beam quality control technology for high energy solid laser system[C]//The Fourth Symposium on the Development of Atmospheric Optics and Adaptive Optics. 2019
|
| [7] |
王超, 唐晓军, 徐鎏婧, 等. 输出功率11kW的高功率固体板条激光器介质热分析[J]. 中国激光, 2010, 37(11):2807-2809 doi: 10.3788/CJL20103711.2807
Wang Chao, Tang Xiaojun, Xu Liujing, et al. Investigation on thermal effect of high power slab laser with 11 kW[J]. Chinese Journal of Lasers, 2010, 37(11): 2807-2809 doi: 10.3788/CJL20103711.2807
|
| [8] |
高清松, 胡浩, 裴正平, 等. 10kW级固体板条激光放大器设计与实验研究[J]. 中国激光, 2012, 39:0202001 doi: 10.3788/CJL201239.0202001
Gao Qingsong, Hu Hao, Pei Zhengping, et al. Design and experiment study of all-solid slab laser amplifier with laser power of 10 kW[J]. Chinese Journal of Lasers, 2012, 39: 0202001 doi: 10.3788/CJL201239.0202001
|
| [9] |
Li Mi, Hu Hao, Gao Qingsong, et al. A 7.08-kW YAG/Nd: YAG/YAG composite ceramic slab laser with dual concentration doping[J]. IEEE Photonics Journal, 2017, 9: 1504010.
|
| [10] |
Xu Liu, Wu Yingchen, Du Yinglei, et al. High brightness laser based on Yb: YAG MOPA chain and adaptive optics system at room temperature[J]. Optics Express, 2018, 26(11): 14592-14600. doi: 10.1364/OE.26.014592
|
| [11] |
Wang Dan, Du Yinglei, Wu Yingchen, et al. 20 kW class high-beam-quality CW laser amplifier chain based on a Yb: YAG slab at room temperature[J]. Optics Letters, 2018, 43(16): 3838-3841. doi: 10.1364/OL.43.003838
|
| [12] |
Filgas D, Rockwell D, Spariosa K. Next generation lasers for advanced EO systems[J]. Raytheon Technology Today, 2008, 1: 9-13.
|
| [13] |
Filgas D, Clatterbuck T, Cashen M, et al. Recent results for the Raytheon RELI program[C]//Proceedings of SPIE 8381, Laser Technology for Defense and Security VIII. 2012: 83810W.
|
| [14] |
Giesen A, Speiser J. Fifteen years of work on thin-disk lasers: results and scaling laws[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 598-609. doi: 10.1109/JSTQE.2007.897180
|
| [15] |
Nixon M D, Cates M C. High energy high brightness thin disk laser[C]//Proceedings of SPIE 8547, High-Power Lasers 2012: Technology and Systems. 2012: 85470D.
|
| [16] |
Wilmington M A. Textron defense systems awarded funding for the DARPA HELLADS Program[R]. 2008.
|
| [17] |
Mandl A, Klimek D E. Textron's J-HPSSL 100 kW ThinZag® laser program[C]//Conference on Lasers and Electro-Optics 2010. 2010: JThH2.
|
| [18] |
GA-EMS and Boeing Team to Develop 300 kW-class HELWS Prototype for US Army[EB/OL].https://www.ga.com/ga-ems-and-boeing-team-to-develop-300kw-class-helws-prototype-for-us-army
|
| [19] |
Nie R Z, She J B, Zhao P F, et al. Fully immersed liquid cooling thin-disk oscillator[J]. Laser Physics Letters, 2014, 11: 115808. doi: 10.1088/1612-2011/11/11/115808
|
| [20] |
Fu Xing, Li Peilin, Liu Qiang, et al. 3 kW liquid-cooled elastically-supported Nd: YAG multi-slab CW laser resonator[J]. Optics Express, 2014, 22(15): 18421-18432. doi: 10.1364/OE.22.018421
|
| [21] |
Fu Xing, Liu Qiang, Li Peilin, et al. Numerical simulation of 30-kW class liquid-cooled Nd: YAG multi-slab resonator[J]. Optics Express, 2015, 23(14): 18458-18470. doi: 10.1364/OE.23.018458
|
| [22] |
Ye Zhibin, Liu Chong, Tu Bo, et al. Kilowatt-level direct-‘refractive index matching liquid’-cooled Nd: YLF thin disk laser resonator[J]. Optics Express, 2016, 24(2): 1758-1772. doi: 10.1364/OE.24.001758
|
| [23] |
Wang Ke, Tu Bo, Jia Chunyan, et al. 7kW direct-liquid-cooled side-pumped Nd: YAG multi-disk laser resonator[J]. Optics Express, 2016, 24(13): 15012-15020. doi: 10.1364/OE.24.015012
|
| [24] |
Yi Jiayu, Tu Bo, An Xiangchao, et al. 9 kilowatt-level direct-liquid-cooled Nd: YAG multi-module QCW laser[J]. Optics Express, 2018, 26(11): 13915-13926. doi: 10.1364/OE.26.013915
|
| [25] |
Jeong Y, Sahu J K, Payne D N, et al. Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power[J]. Electronics Letters, 2004, 40(8): 470-472. doi: 10.1049/el:20040298
|
| [26] |
O'Connor M, Gapontsev V, Fomin V, et al. Power scaling of SM fiber lasers toward 10kW[C]//Conference on Lasers and Electro-Optics/International Quantum Electronics Conference. 2009: CThA3.
|
| [27] |
Shiner B. The impact of fiber laser technology on the world wide material processing market[C]//CLEO: 2013. 2013: AF2J. 1.
|
| [28] |
陈晓龙, 楼风光, 何宇, 等. 高效率全国产化10 kW光纤激光器[J]. 光学学报, 2019, 39:0336001 doi: 10.3788/AOS201939.0336001
Chen Xiaolong, Lou Fengguang, He Yu, et al. Home-made 10 kW fiber laser with high efficiency[J]. Acta Optica Sinica, 2019, 39: 0336001 doi: 10.3788/AOS201939.0336001
|
| [29] |
林傲祥, 倪力, 彭昆, 等. 国产YDF有源光纤实现单纤20 kW激光输出[J]. 中国科技成果, 2021, 22(13):7-9 doi: 10.3772/j.issn.1009-5659.2021.13.004
Lin Aoxiang, Ni Li, Peng Kun, et al. 10 kW-level pump-gain integrated functional laser fiber[J]. China Science and Technology Achievements, 2021, 22(13): 7-9 doi: 10.3772/j.issn.1009-5659.2021.13.004
|
| [30] |
Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266. doi: 10.1364/OE.16.013240
|
| [31] |
Otto H J, Jauregui C, Limpert J, et al. Average power limit of fiber-laser systems with nearly diffraction-limited beam quality[C]//Proceedings of SPIE 9728, Fiber Lasers XIII: Technology, Systems, and Applications. 2016: 97280E.
|
| [32] |
Liu Zejin, Zhou Pu, Xu Xiaojun, et al. Coherent beam combining of high power fiber lasers: progress and prospect[J]. Science China Technological Sciences, 2013, 56(7): 1597-1606. doi: 10.1007/s11431-013-5260-z
|
| [33] |
Loftus T H, Thomas A M, Hoffman P R, et al. Spectrally beam-combined fiber lasers for high-average-power applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 487-497. doi: 10.1109/JSTQE.2007.896568
|
| [34] |
Madasamy P, Thomas A, Loftus T, et al. Comparison of spectral beam combining approaches for high power fiber laser systems[C]//Frontiers in Optics 2008/Laser Science XXIV/Plasmonics and Metamaterials/Optical Fabrication and Testing. 2008: FTuJ3.
|
| [35] |
Kobyakov A, Sauer M, Chowdhury D. Stimulated Brillouin scattering in optical fibers[J]. Advances in Optics and Photonics, 2010, 2(1): 1-59. doi: 10.1364/AOP.2.000001
|
| [36] |
Huang Zhihua, Liang Xiaobao, Li Chengyu, et al. Spectral broadening in high-power Yb-doped fiber lasers employing narrow-linewidth multilongitudinal-mode oscillators[J]. Applied Optics, 2016, 55(2): 297-302. doi: 10.1364/AO.55.000297
|
| [37] |
Yan Ping, Huang Yusheng, Sun Junyi, et al. 3.1 kW monolithic MOPA configuration fibre laser bidirectionally pumped by non-wavelength-stabilized laser diodes[J]. Laser Physics Letters, 2017, 14: 080001. doi: 10.1088/1612-202X/aa7c92
|
| [38] |
Huang Yusheng, Xiao Qirong, Li Dan, et al. 3 kW narrow linewidth high spectral density continuous wave fiber laser based on fiber Bragg grating[J]. Optics & Laser Technology, 2021, 133: 106538.
|
| [39] |
Xu Jiangming, Liu Wei, Leng Jinyong, et al. Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW[J]. Optics Letters, 2015, 40(13): 2973-2976. doi: 10.1364/OL.40.002973
|
| [40] |
杨依枫, 沈辉, 陈晓龙, 等. 全光纤化高效率、窄线宽光纤激光器实现2.5 kW近衍射极限输出[J]. 中国激光, 2016, 43:0419004
Yang Yifeng, Shen Hui, Chen Xiaolong, et al. 2.5 kW near diffraction limit output of all fiber high efficiency, narrow linewidth fiber laser[J]. Chinese Journal of Lasers, 2016, 43: 0419004
|
| [41] |
Yu C X, Shatrovoy O, Fan T Y, et al. Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier[J]. Optics Letters, 2016, 41(22): 5202-5205. doi: 10.1364/OL.41.005202
|
| [42] |
Wang Yanshan, Ke Weiwei, Peng Wanjing, et al. 3 kW, 0.2 nm narrow linewidth linearly polarized all-fiber laser based on a compact MOPA structure[J]. Laser Physics Letters, 2020, 17: 075101. doi: 10.1088/1612-202X/ab8e42
|
| [43] |
Wang Yanshan, Sun Yinhong, Peng Wanjing, et al. 3.25 kW all-fiberized and polarization-maintained Yb-doped amplifier with a 20 GHz linewidth and near-diffraction-limited beam quality[J]. Applied Optics, 2021, 60(21): 6331-6336. doi: 10.1364/AO.431081
|
| [44] |
Missile defense agency for president’s budget submission FY 2015: RDT&E Program, 2014-03.
|
| [45] |
Flores A, Dajani I. Kilowatt-class, all-fiber amplifiers for beam combining[J]. SPIE Newsroom Lasers & Sources, 2016.
|
| [46] |
Honea E, Afzal R S, Savage-Leuchs M, et al. Advances in fiber laser spectral beam combining for power scaling[C]//Proceedings of SPIE 9730, Components and Packaging for Laser Systems II. 2016: 97300Y.
|
| [47] |
唐晓军, 王钢, 刘娇, 等. 高亮度固体激光器技术发展研究[J]. 中国工程科学, 2020, 22(3):49-55
Tang Xiaojun, Wang Gang, Liu Jiao, et al. Development of high brightness solid-state laser technology[J]. Strategic Study of CAE, 2020, 22(3): 49-55
|
| [48] |
Zheng Ye, Zhu Zhanda, Liu Xiaoxi, et al. High-power, high-beam-quality spectral beam combination of six narrow-linewidth fiber amplifiers with two transmission diffraction gratings[J]. Applied Optics, 2019, 58(30): 8339-8343. doi: 10.1364/AO.58.008339
|
| [49] |
Krupke W F. Diode-pumped alkali laser: 6643311[P] 2003-11-4.
|
| [50] |
Krupke W, Beach R J, Kanz V K, et al. Resonance transition 795-nm rubidium laser[J]. Optics Letters, 2003, 28(23): 2336-2338. doi: 10.1364/OL.28.002336
|
| [51] |
Zhdanov B V, Ehrenreich T, Knize R J. Highly efficient optically pumped cesium vapor laser[J]. Optics Communications, 2006, 260(2): 696-698. doi: 10.1016/j.optcom.2005.11.042
|
| [52] |
Zweiback J, Krupke B. High power diode pumped alkali vapor lasers[C]//Proceedings of SPIE 7005, High-Power Laser Ablation VII. 2008: 700525.
|
| [53] |
Miller W S, Sulham C V, Holtgrave J C, et al. Limitations of an optically pumped rubidium laser imposed by atom recycle rate[J]. Applied Physics B, 2011, 103(4): 819-824. doi: 10.1007/s00340-011-4540-1
|
| [54] |
Novel diode-pumped alkali laser achieves first light[R]. http://www.wpafb.af.mil/news/story.asp?id=123212683.
|
| [55] |
Bogachev A V, Garanin S G, Dudov A M, et al. Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation[J]. Quantum Electronics, 2012, 42(2): 95-98. doi: 10.1070/QE2012v042n02ABEH014734
|
| [56] |
Chronology of MDA’s plans for laser boost-phase defense[R/OL]. (2016-08-26).https://mostlymissiledefense.com/2016/08/26/chronology-of-mdas-plans-for-laser-boost-phase-defense-august-26-2016/.
|
| [57] |
MDA. Department of Energy National Nuclear Security Administration[R]. Washington, 20585.
|
| [58] |
Wisoff P J. Diode pumped alkaline laser system: a high powered, low SWaP directed energy option for ballistic missile defense high-level summary-April 2017[R]. LLNL-TR-730237, 2017.
|
| [59] |
Department of Defense Fiscal Year(R) 2017 President’s Budget Submission, February 2016[Z].
|
| [60] |
Honea E C, Ebbers C A, Beach R J, et al. Analysis of an intracavity-doubled diode-pumped Q-switched Nd: YAG laser producing more than 100 W of power at 0.532 μm[J]. Optics Letters, 1998, 23(15): 1203-1205. doi: 10.1364/OL.23.001203
|
| [61] |
Yi J, Moon H J, Lee J. Diode-pumped 100-W green Nd: YAG rod laser[J]. Applied Optics, 2004, 43(18): 3732-3737. doi: 10.1364/AO.43.003732
|
| [62] |
Dudley D R, Mehl O, Wang G Y, et al. Q-switched diode-pumped Nd: YAG rod laser with output power of 420W at 532nm and 160W at 355nm[C]//Proceedings of SPIE 7193, Solid State Lasers XVIII: Technology and Devices. 2009: 71930Z.
|
| [63] |
Sascha W, Hangst A, Stolzenburg C, et al. Frequency doubled high-power disk lasers in pulsed and continuous-wave operation[C]//Proceedings of SPIE 8239, High Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, and Applications. 2012: 823907.
|
| [64] |
Meier T, Willke B, Danzmann K. Continuous-wave single-frequency 532 nm laser source emitting 130 W into the fundamental transversal mode[J]. Optics Letters, 2010, 35(22): 3742-3744. doi: 10.1364/OL.35.003742
|
| [65] |
Avdokhin A, Gapontsev V, Grapov Y S. 170W continuous-wave single-frequency single-mode green fiber laser[C]//Conference on Fiber Lasers IX - Technology, Systems, and Applications. 2012.
|
| [66] |
Favre S, Sidler T C, Salathe R P. High-power second harmonic generation with free-running Nd: YAG slab laser for micromachining applications[C]//Proceedings of SPIE 4088, First International Symposium on Laser Precision Microfabrication. 2000: 195-195.
|
| [67] |
Gapontsev V, Avdokhin A, Kadwani P, et al. SM green fiber laser operating in CW and QCW regimes and producing over 550W of average output power[C]//Proceedings of SPIE 8964, Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XIII. 2014: 896407.
|
| [68] |
Nubbemeyer T, Kaumanns M, Ueffing M, et al. 1 kW, 200 mJ picosecond thin-disk laser system[J]. Optics Letters, 2017, 42(7): 1381-1384. doi: 10.1364/OL.42.001381
|
| [69] |
Röcker C, Loescher A, Bienert F, et al. Ultrafast green thin-disk laser exceeding 1.4 kW of average power[J]. Optics Letters, 2020, 45(19): 5522-5525. doi: 10.1364/OL.403781
|
| [70] |
Russbueldt P, Mans T, Hoffmann H D, et al. 1100 W Yb: YAG femtosecond Innoslab amplifier[C]//Proceedings Volume 7912, Solid State Lasers XX: Technology and Devices. 2011: 79120R.
|
| [71] |
Kuznetsov I, Mukhin I, Palashov O, et al. Thin-rod Yb: YAG amplifiers for high average and peak power lasers[J]. Optics Letters, 2018, 43(16): 3941-3944. doi: 10.1364/OL.43.003941
|
| [72] |
Li Feng, Wang Nana, Yang Zhi, et al. High-energy femtosecond laser system based on a fiber laser seeder, Yb: YAG single crystal fiber and chirped volume Bragg grating[J]. Laser Physics Letters, 2020, 17: 065103. doi: 10.1088/1612-202X/ab86b2
|
| [73] |
Injeyan H, Goodno G D. High-power laser handbook[M]. New York: McGraw-Hill Professional, 2011.
|
| [74] |
Yasuhara R, Kawashima T, Sekine T, et al. 213 W average power of 2.4 GW pulsed thermally controlled Nd: glass zigzag slab laser with a stimulated Brillouin scattering mirror[J]. Optics Letters, 2008, 33(15): 1711-1713. doi: 10.1364/OL.33.001711
|
| [75] |
Fan Zhongwei, Qiu Jisi, Kang Zhijun, et al. High beam quality 5 J, 200 Hz Nd: YAG laser system[J]. Light: Science & Applications, 2017, 6: e17004.
|
| [76] |
Bayramian A, Armstrong P, Ault E, et al. The mercury project: a high average power, gas-cooled laser for inertial fusion energy development[J]. Fusion Science and Technology, 2007, 52(3): 383-387. doi: 10.13182/FST07-A1517
|
| [77] |
Gonçalvès-Novo T, Albach D, Vincent B, et al. 14 J/2 Hz Yb3+: YAG diode pumped solid state laser chain[J]. Optics Express, 2013, 21(1): 855-866. doi: 10.1364/OE.21.000855
|
| [78] |
Banerjee S, Mason P D, Ertel K, et al. 100 J-level nanosecond pulsed diode pumped solid state laser[J]. Optics Letters, 2016, 41(9): 2089-2092. doi: 10.1364/OL.41.002089
|
| [79] |
Liu Tinghao, Sui Zhan, Chen Lin, et al. 12 J, 10 Hz diode-pumped Nd: YAG distributed active mirror amplifier chain with ASE suppression[J]. Optics Express, 2017, 25(18): 21981-21992. doi: 10.1364/OE.25.021981
|