Volume 34 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Shang Jianli, Wang Juntao, Peng Wanjing, et al. Research progress and prospects of laser diode pumped high-energy laser[J]. High Power Laser and Particle Beams, 2022, 34: 011007. doi: 10.11884/HPLPB202234.210530
Citation: Shang Jianli, Wang Juntao, Peng Wanjing, et al. Research progress and prospects of laser diode pumped high-energy laser[J]. High Power Laser and Particle Beams, 2022, 34: 011007. doi: 10.11884/HPLPB202234.210530

Research progress and prospects of laser diode pumped high-energy laser

doi: 10.11884/HPLPB202234.210530
  • Received Date: 2021-07-30
  • Rev Recd Date: 2021-12-31
  • Available Online: 2022-01-14
  • Publish Date: 2022-01-15
  • High-energy lasers are widely used in materials processing, scientific research, space debris removal, and military counter measures. In recent years, various types of diode-pumped high-energy lasers with high power, high efficiency, and high beam quality have been rapidly developed due to their compact structure, simple system, full electric drive, and unlimited magazines. In this review, we describe in detail the research progress of high-average power bulk solid-state lasers, high-power visible light lasers, high-peak power lasers, high-power fiber lasers, alkali metal vapor lasers and other diode-pumped high-energy lasers at home and abroad. Moreover, we conclude with some perspectives and outlook on their future developments.
  • loading
  • [1]
    孙承纬. 激光辐照效应[M]. 北京: 国防工业出版社, 2002

    Sun Chengwei. Laser irradiation effect[M]. Beijing: National Defense Industry Press, 2002
    [2]
    宋宏伟, 黄晨光. 激光辐照诱导的热与力学效应[J]. 力学进展, 2016, 46(1):435-477

    Song Hongwei, Huang Chenguang. Progress in thermal-mechanical effects induced by laser[J]. Advances in Mechanics, 2016, 46(1): 435-477
    [3]
    Marmo J, Injeyan H, Komine H, et al. Joint high power solid state laser program advancements at Northrop Grumman[C]//Proceedings of SPIE 7195, Fiber Lasers VI: Technology, Systems, and Applications. 2009: 719507.
    [4]
    Mcnaught S J, Asman C P, Injeyan A, et al. 100-kW coherently combined Nd: YAG MOPA laser array[C]//Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical Digest. 2009: 321-334.
    [5]
    Chen Junchi, Li Jiang, Xu Jialin, et al. 4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd: YAG slab laser[J]. Optics & Laser Technology, 2014, 63: 50-53.
    [6]
    郭亚丁. 高能固体激光自适应光学光束质量控制[C]//第四届大气光学及自适应光学技术发展研讨会. 2019

    Guo Yading. Beam quality control technology for high energy solid laser system[C]//The Fourth Symposium on the Development of Atmospheric Optics and Adaptive Optics. 2019
    [7]
    王超, 唐晓军, 徐鎏婧, 等. 输出功率11kW的高功率固体板条激光器介质热分析[J]. 中国激光, 2010, 37(11):2807-2809 doi: 10.3788/CJL20103711.2807

    Wang Chao, Tang Xiaojun, Xu Liujing, et al. Investigation on thermal effect of high power slab laser with 11 kW[J]. Chinese Journal of Lasers, 2010, 37(11): 2807-2809 doi: 10.3788/CJL20103711.2807
    [8]
    高清松, 胡浩, 裴正平, 等. 10kW级固体板条激光放大器设计与实验研究[J]. 中国激光, 2012, 39:0202001 doi: 10.3788/CJL201239.0202001

    Gao Qingsong, Hu Hao, Pei Zhengping, et al. Design and experiment study of all-solid slab laser amplifier with laser power of 10 kW[J]. Chinese Journal of Lasers, 2012, 39: 0202001 doi: 10.3788/CJL201239.0202001
    [9]
    Li Mi, Hu Hao, Gao Qingsong, et al. A 7.08-kW YAG/Nd: YAG/YAG composite ceramic slab laser with dual concentration doping[J]. IEEE Photonics Journal, 2017, 9: 1504010.
    [10]
    Xu Liu, Wu Yingchen, Du Yinglei, et al. High brightness laser based on Yb: YAG MOPA chain and adaptive optics system at room temperature[J]. Optics Express, 2018, 26(11): 14592-14600. doi: 10.1364/OE.26.014592
    [11]
    Wang Dan, Du Yinglei, Wu Yingchen, et al. 20 kW class high-beam-quality CW laser amplifier chain based on a Yb: YAG slab at room temperature[J]. Optics Letters, 2018, 43(16): 3838-3841. doi: 10.1364/OL.43.003838
    [12]
    Filgas D, Rockwell D, Spariosa K. Next generation lasers for advanced EO systems[J]. Raytheon Technology Today, 2008, 1: 9-13.
    [13]
    Filgas D, Clatterbuck T, Cashen M, et al. Recent results for the Raytheon RELI program[C]//Proceedings of SPIE 8381, Laser Technology for Defense and Security VIII. 2012: 83810W.
    [14]
    Giesen A, Speiser J. Fifteen years of work on thin-disk lasers: results and scaling laws[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 598-609. doi: 10.1109/JSTQE.2007.897180
    [15]
    Nixon M D, Cates M C. High energy high brightness thin disk laser[C]//Proceedings of SPIE 8547, High-Power Lasers 2012: Technology and Systems. 2012: 85470D.
    [16]
    Wilmington M A. Textron defense systems awarded funding for the DARPA HELLADS Program[R]. 2008.
    [17]
    Mandl A, Klimek D E. Textron's J-HPSSL 100 kW ThinZag® laser program[C]//Conference on Lasers and Electro-Optics 2010. 2010: JThH2.
    [18]
    GA-EMS and Boeing Team to Develop 300 kW-class HELWS Prototype for US Army[EB/OL].https://www.ga.com/ga-ems-and-boeing-team-to-develop-300kw-class-helws-prototype-for-us-army
    [19]
    Nie R Z, She J B, Zhao P F, et al. Fully immersed liquid cooling thin-disk oscillator[J]. Laser Physics Letters, 2014, 11: 115808. doi: 10.1088/1612-2011/11/11/115808
    [20]
    Fu Xing, Li Peilin, Liu Qiang, et al. 3 kW liquid-cooled elastically-supported Nd: YAG multi-slab CW laser resonator[J]. Optics Express, 2014, 22(15): 18421-18432. doi: 10.1364/OE.22.018421
    [21]
    Fu Xing, Liu Qiang, Li Peilin, et al. Numerical simulation of 30-kW class liquid-cooled Nd: YAG multi-slab resonator[J]. Optics Express, 2015, 23(14): 18458-18470. doi: 10.1364/OE.23.018458
    [22]
    Ye Zhibin, Liu Chong, Tu Bo, et al. Kilowatt-level direct-‘refractive index matching liquid’-cooled Nd: YLF thin disk laser resonator[J]. Optics Express, 2016, 24(2): 1758-1772. doi: 10.1364/OE.24.001758
    [23]
    Wang Ke, Tu Bo, Jia Chunyan, et al. 7kW direct-liquid-cooled side-pumped Nd: YAG multi-disk laser resonator[J]. Optics Express, 2016, 24(13): 15012-15020. doi: 10.1364/OE.24.015012
    [24]
    Yi Jiayu, Tu Bo, An Xiangchao, et al. 9 kilowatt-level direct-liquid-cooled Nd: YAG multi-module QCW laser[J]. Optics Express, 2018, 26(11): 13915-13926. doi: 10.1364/OE.26.013915
    [25]
    Jeong Y, Sahu J K, Payne D N, et al. Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power[J]. Electronics Letters, 2004, 40(8): 470-472. doi: 10.1049/el:20040298
    [26]
    O'Connor M, Gapontsev V, Fomin V, et al. Power scaling of SM fiber lasers toward 10kW[C]//Conference on Lasers and Electro-Optics/International Quantum Electronics Conference. 2009: CThA3.
    [27]
    Shiner B. The impact of fiber laser technology on the world wide material processing market[C]//CLEO: 2013. 2013: AF2J. 1.
    [28]
    陈晓龙, 楼风光, 何宇, 等. 高效率全国产化10 kW光纤激光器[J]. 光学学报, 2019, 39:0336001 doi: 10.3788/AOS201939.0336001

    Chen Xiaolong, Lou Fengguang, He Yu, et al. Home-made 10 kW fiber laser with high efficiency[J]. Acta Optica Sinica, 2019, 39: 0336001 doi: 10.3788/AOS201939.0336001
    [29]
    林傲祥, 倪力, 彭昆, 等. 国产YDF有源光纤实现单纤20 kW激光输出[J]. 中国科技成果, 2021, 22(13):7-9 doi: 10.3772/j.issn.1009-5659.2021.13.004

    Lin Aoxiang, Ni Li, Peng Kun, et al. 10 kW-level pump-gain integrated functional laser fiber[J]. China Science and Technology Achievements, 2021, 22(13): 7-9 doi: 10.3772/j.issn.1009-5659.2021.13.004
    [30]
    Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266. doi: 10.1364/OE.16.013240
    [31]
    Otto H J, Jauregui C, Limpert J, et al. Average power limit of fiber-laser systems with nearly diffraction-limited beam quality[C]//Proceedings of SPIE 9728, Fiber Lasers XIII: Technology, Systems, and Applications. 2016: 97280E.
    [32]
    Liu Zejin, Zhou Pu, Xu Xiaojun, et al. Coherent beam combining of high power fiber lasers: progress and prospect[J]. Science China Technological Sciences, 2013, 56(7): 1597-1606. doi: 10.1007/s11431-013-5260-z
    [33]
    Loftus T H, Thomas A M, Hoffman P R, et al. Spectrally beam-combined fiber lasers for high-average-power applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 487-497. doi: 10.1109/JSTQE.2007.896568
    [34]
    Madasamy P, Thomas A, Loftus T, et al. Comparison of spectral beam combining approaches for high power fiber laser systems[C]//Frontiers in Optics 2008/Laser Science XXIV/Plasmonics and Metamaterials/Optical Fabrication and Testing. 2008: FTuJ3.
    [35]
    Kobyakov A, Sauer M, Chowdhury D. Stimulated Brillouin scattering in optical fibers[J]. Advances in Optics and Photonics, 2010, 2(1): 1-59. doi: 10.1364/AOP.2.000001
    [36]
    Huang Zhihua, Liang Xiaobao, Li Chengyu, et al. Spectral broadening in high-power Yb-doped fiber lasers employing narrow-linewidth multilongitudinal-mode oscillators[J]. Applied Optics, 2016, 55(2): 297-302. doi: 10.1364/AO.55.000297
    [37]
    Yan Ping, Huang Yusheng, Sun Junyi, et al. 3.1 kW monolithic MOPA configuration fibre laser bidirectionally pumped by non-wavelength-stabilized laser diodes[J]. Laser Physics Letters, 2017, 14: 080001. doi: 10.1088/1612-202X/aa7c92
    [38]
    Huang Yusheng, Xiao Qirong, Li Dan, et al. 3 kW narrow linewidth high spectral density continuous wave fiber laser based on fiber Bragg grating[J]. Optics & Laser Technology, 2021, 133: 106538.
    [39]
    Xu Jiangming, Liu Wei, Leng Jinyong, et al. Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW[J]. Optics Letters, 2015, 40(13): 2973-2976. doi: 10.1364/OL.40.002973
    [40]
    杨依枫, 沈辉, 陈晓龙, 等. 全光纤化高效率、窄线宽光纤激光器实现2.5 kW近衍射极限输出[J]. 中国激光, 2016, 43:0419004

    Yang Yifeng, Shen Hui, Chen Xiaolong, et al. 2.5 kW near diffraction limit output of all fiber high efficiency, narrow linewidth fiber laser[J]. Chinese Journal of Lasers, 2016, 43: 0419004
    [41]
    Yu C X, Shatrovoy O, Fan T Y, et al. Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier[J]. Optics Letters, 2016, 41(22): 5202-5205. doi: 10.1364/OL.41.005202
    [42]
    Wang Yanshan, Ke Weiwei, Peng Wanjing, et al. 3 kW, 0.2 nm narrow linewidth linearly polarized all-fiber laser based on a compact MOPA structure[J]. Laser Physics Letters, 2020, 17: 075101. doi: 10.1088/1612-202X/ab8e42
    [43]
    Wang Yanshan, Sun Yinhong, Peng Wanjing, et al. 3.25 kW all-fiberized and polarization-maintained Yb-doped amplifier with a 20 GHz linewidth and near-diffraction-limited beam quality[J]. Applied Optics, 2021, 60(21): 6331-6336. doi: 10.1364/AO.431081
    [44]
    Missile defense agency for president’s budget submission FY 2015: RDT&E Program, 2014-03.
    [45]
    Flores A, Dajani I. Kilowatt-class, all-fiber amplifiers for beam combining[J]. SPIE Newsroom Lasers & Sources, 2016.
    [46]
    Honea E, Afzal R S, Savage-Leuchs M, et al. Advances in fiber laser spectral beam combining for power scaling[C]//Proceedings of SPIE 9730, Components and Packaging for Laser Systems II. 2016: 97300Y.
    [47]
    唐晓军, 王钢, 刘娇, 等. 高亮度固体激光器技术发展研究[J]. 中国工程科学, 2020, 22(3):49-55

    Tang Xiaojun, Wang Gang, Liu Jiao, et al. Development of high brightness solid-state laser technology[J]. Strategic Study of CAE, 2020, 22(3): 49-55
    [48]
    Zheng Ye, Zhu Zhanda, Liu Xiaoxi, et al. High-power, high-beam-quality spectral beam combination of six narrow-linewidth fiber amplifiers with two transmission diffraction gratings[J]. Applied Optics, 2019, 58(30): 8339-8343. doi: 10.1364/AO.58.008339
    [49]
    Krupke W F. Diode-pumped alkali laser: 6643311[P] 2003-11-4.
    [50]
    Krupke W, Beach R J, Kanz V K, et al. Resonance transition 795-nm rubidium laser[J]. Optics Letters, 2003, 28(23): 2336-2338. doi: 10.1364/OL.28.002336
    [51]
    Zhdanov B V, Ehrenreich T, Knize R J. Highly efficient optically pumped cesium vapor laser[J]. Optics Communications, 2006, 260(2): 696-698. doi: 10.1016/j.optcom.2005.11.042
    [52]
    Zweiback J, Krupke B. High power diode pumped alkali vapor lasers[C]//Proceedings of SPIE 7005, High-Power Laser Ablation VII. 2008: 700525.
    [53]
    Miller W S, Sulham C V, Holtgrave J C, et al. Limitations of an optically pumped rubidium laser imposed by atom recycle rate[J]. Applied Physics B, 2011, 103(4): 819-824. doi: 10.1007/s00340-011-4540-1
    [54]
    Novel diode-pumped alkali laser achieves first light[R]. http://www.wpafb.af.mil/news/story.asp?id=123212683.
    [55]
    Bogachev A V, Garanin S G, Dudov A M, et al. Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation[J]. Quantum Electronics, 2012, 42(2): 95-98. doi: 10.1070/QE2012v042n02ABEH014734
    [56]
    Chronology of MDA’s plans for laser boost-phase defense[R/OL]. (2016-08-26).https://mostlymissiledefense.com/2016/08/26/chronology-of-mdas-plans-for-laser-boost-phase-defense-august-26-2016/.
    [57]
    MDA. Department of Energy National Nuclear Security Administration[R]. Washington, 20585.
    [58]
    Wisoff P J. Diode pumped alkaline laser system: a high powered, low SWaP directed energy option for ballistic missile defense high-level summary-April 2017[R]. LLNL-TR-730237, 2017.
    [59]
    Department of Defense Fiscal Year(R) 2017 President’s Budget Submission, February 2016[Z].
    [60]
    Honea E C, Ebbers C A, Beach R J, et al. Analysis of an intracavity-doubled diode-pumped Q-switched Nd: YAG laser producing more than 100 W of power at 0.532 μm[J]. Optics Letters, 1998, 23(15): 1203-1205. doi: 10.1364/OL.23.001203
    [61]
    Yi J, Moon H J, Lee J. Diode-pumped 100-W green Nd: YAG rod laser[J]. Applied Optics, 2004, 43(18): 3732-3737. doi: 10.1364/AO.43.003732
    [62]
    Dudley D R, Mehl O, Wang G Y, et al. Q-switched diode-pumped Nd: YAG rod laser with output power of 420W at 532nm and 160W at 355nm[C]//Proceedings of SPIE 7193, Solid State Lasers XVIII: Technology and Devices. 2009: 71930Z.
    [63]
    Sascha W, Hangst A, Stolzenburg C, et al. Frequency doubled high-power disk lasers in pulsed and continuous-wave operation[C]//Proceedings of SPIE 8239, High Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, and Applications. 2012: 823907.
    [64]
    Meier T, Willke B, Danzmann K. Continuous-wave single-frequency 532 nm laser source emitting 130 W into the fundamental transversal mode[J]. Optics Letters, 2010, 35(22): 3742-3744. doi: 10.1364/OL.35.003742
    [65]
    Avdokhin A, Gapontsev V, Grapov Y S. 170W continuous-wave single-frequency single-mode green fiber laser[C]//Conference on Fiber Lasers IX - Technology, Systems, and Applications. 2012.
    [66]
    Favre S, Sidler T C, Salathe R P. High-power second harmonic generation with free-running Nd: YAG slab laser for micromachining applications[C]//Proceedings of SPIE 4088, First International Symposium on Laser Precision Microfabrication. 2000: 195-195.
    [67]
    Gapontsev V, Avdokhin A, Kadwani P, et al. SM green fiber laser operating in CW and QCW regimes and producing over 550W of average output power[C]//Proceedings of SPIE 8964, Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XIII. 2014: 896407.
    [68]
    Nubbemeyer T, Kaumanns M, Ueffing M, et al. 1 kW, 200 mJ picosecond thin-disk laser system[J]. Optics Letters, 2017, 42(7): 1381-1384. doi: 10.1364/OL.42.001381
    [69]
    Röcker C, Loescher A, Bienert F, et al. Ultrafast green thin-disk laser exceeding 1.4 kW of average power[J]. Optics Letters, 2020, 45(19): 5522-5525. doi: 10.1364/OL.403781
    [70]
    Russbueldt P, Mans T, Hoffmann H D, et al. 1100 W Yb: YAG femtosecond Innoslab amplifier[C]//Proceedings Volume 7912, Solid State Lasers XX: Technology and Devices. 2011: 79120R.
    [71]
    Kuznetsov I, Mukhin I, Palashov O, et al. Thin-rod Yb: YAG amplifiers for high average and peak power lasers[J]. Optics Letters, 2018, 43(16): 3941-3944. doi: 10.1364/OL.43.003941
    [72]
    Li Feng, Wang Nana, Yang Zhi, et al. High-energy femtosecond laser system based on a fiber laser seeder, Yb: YAG single crystal fiber and chirped volume Bragg grating[J]. Laser Physics Letters, 2020, 17: 065103. doi: 10.1088/1612-202X/ab86b2
    [73]
    Injeyan H, Goodno G D. High-power laser handbook[M]. New York: McGraw-Hill Professional, 2011.
    [74]
    Yasuhara R, Kawashima T, Sekine T, et al. 213 W average power of 2.4 GW pulsed thermally controlled Nd: glass zigzag slab laser with a stimulated Brillouin scattering mirror[J]. Optics Letters, 2008, 33(15): 1711-1713. doi: 10.1364/OL.33.001711
    [75]
    Fan Zhongwei, Qiu Jisi, Kang Zhijun, et al. High beam quality 5 J, 200 Hz Nd: YAG laser system[J]. Light: Science & Applications, 2017, 6: e17004.
    [76]
    Bayramian A, Armstrong P, Ault E, et al. The mercury project: a high average power, gas-cooled laser for inertial fusion energy development[J]. Fusion Science and Technology, 2007, 52(3): 383-387. doi: 10.13182/FST07-A1517
    [77]
    Gonçalvès-Novo T, Albach D, Vincent B, et al. 14 J/2 Hz Yb3+: YAG diode pumped solid state laser chain[J]. Optics Express, 2013, 21(1): 855-866. doi: 10.1364/OE.21.000855
    [78]
    Banerjee S, Mason P D, Ertel K, et al. 100  J-level nanosecond pulsed diode pumped solid state laser[J]. Optics Letters, 2016, 41(9): 2089-2092. doi: 10.1364/OL.41.002089
    [79]
    Liu Tinghao, Sui Zhan, Chen Lin, et al. 12 J, 10 Hz diode-pumped Nd: YAG distributed active mirror amplifier chain with ASE suppression[J]. Optics Express, 2017, 25(18): 21981-21992. doi: 10.1364/OE.25.021981
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(29)  / Tables(2)

    Article views (3931) PDF downloads(488) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return