Volume 36 Issue 2
Jan.  2024
Turn off MathJax
Article Contents
Zhang Hongqi, Li Zhiheng, Ma Shaoxiang, et al. Design of high-voltage components for acceleration grid power supply of neutral beam injection system[J]. High Power Laser and Particle Beams, 2024, 36: 025011. doi: 10.11884/HPLPB202436.230159
Citation: Zhang Hongqi, Li Zhiheng, Ma Shaoxiang, et al. Design of high-voltage components for acceleration grid power supply of neutral beam injection system[J]. High Power Laser and Particle Beams, 2024, 36: 025011. doi: 10.11884/HPLPB202436.230159

Design of high-voltage components for acceleration grid power supply of neutral beam injection system

doi: 10.11884/HPLPB202436.230159
  • Received Date: 2023-04-30
  • Accepted Date: 2023-10-17
  • Rev Recd Date: 2023-10-17
  • Available Online: 2023-10-23
  • Publish Date: 2024-01-12
  • Negative-ion based neutral beam injection is an indispensable auxiliary heating method for future large tokamak devices. The acceleration grid power supply in the neutral beam system requires an output voltage of -200 kV and a power of 5 MW, and often faces special conditions of sudden short-circuit and disconnection of the load. The design of the high-voltage components is still missing in the research of the acceleration grid power supply. The insulation design of the high-voltage components is a critical part of the power supply development process. In this paper, the circuit parameters of the step-up transformer, high-voltage rectifier and high-voltage filter of the high-voltage part of the power supply are calculated according to the power supply index and the characteristics of the special working conditions, the engineering design based on oil-immersed insulation of these parts is also carried out, and the insulation is verified by finite element simulation analysis. The simulation results show that the maximum electric field strength in these components is 16.22 kV/mm, which is less than the transformer oil breakdown field strength and has 2 times the insulation margin. The structural design of the high-voltage components in this paper can meet the insulation requirements of the power supply.
  • loading
  • [1]
    朱士尧. 核聚变原理[M]. 合肥: 中国科学技术大学出版社, 1992

    Zhu Shiyao. Principles of fusion energy[M]. Hefei: University of Science and Technology of China Press, 1992
    [2]
    Imai T, Kobayashi N, Temkin R, et al. ITER R&D: auxiliary systems: electron cyclotron heating and current drive system[J]. Fusion Engineering and Design, 2001, 55(2/3): 281-289.
    [3]
    Van Zeeland M A, Heidbrink W W, Nazikian R, et al. Reversed shear Alfvén eigenmode stabilization by localized electron cyclotron heating[J]. Plasma Physics and Controlled Fusion, 2008, 50: 035009. doi: 10.1088/0741-3335/50/3/035009
    [4]
    盛鹏, 胡纯栋, 宋士花, 等. EAST中性束注入控制系统设计[J]. 强激光与粒子束, 2014, 26:104003 doi: 10.11884/HPLPB201426.104003

    Sheng Peng, Hu Chundong, Song Shihua, et al. Design of control system of neutral beam injection on EAST[J]. High Power Laser and Particle Beams, 2014, 26: 104003 doi: 10.11884/HPLPB201426.104003
    [5]
    王海田, 李格, 曹亮. EAST中性束注入器用高压缓冲器分析[J]. 强激光与粒子束, 2010, 22(6):1373-1377 doi: 10.3788/HPLPB20102206.1373

    Wang Haitian, Li Ge, Cao Liang. Snubber for EAST neutral beam injector[J]. High Power Laser and Particle Beams, 2010, 22(6): 1373-1377 doi: 10.3788/HPLPB20102206.1373
    [6]
    Liu Zhimin, Liu Xiaoning, Hu Chundong, et al. The power supply system of ion source for NBI[J]. Plasma Science and Technology, 2005, 7(3): 2819-2821. doi: 10.1088/1009-0630/7/3/007
    [7]
    Vila R, Hodgson E R. Dielectric loss during irradiation of a candidate ITER NBI RF ion-source insulator[J]. Journal of Nuclear Materials, 2011, 417(1/3): 787-789.
    [8]
    Zhang Hongqi, Zhu Bangyou, Ma Shaoxiang, et al. DC active power filter based on model predictive control for DC bus overvoltage suppression of accelerator grid power supply[J]. Plasma Science and Technology, 2023, 25: 064001. doi: 10.1088/2058-6272/acb1a4
    [9]
    Bigi M, De Lorenzi A, Grando L, et al. A model for electrical fast transient analyses of the ITER NBI power supplies and the MAMuG accelerator[J]. Fusion Engineering and Design, 2009, 84(2/6): 446-450.
    [10]
    毛晓惠, 李青, 王雅丽, 等. 基于脉冲调制技术的LHCD大功率阴极高压电源[J]. 强激光与粒子束, 2016, 28:015004 doi: 10.11884/HPLPB201628.015004

    Mao Xiaohui, Li Qing, Wang Yali, et al. LHCD cathode high voltage power supply based on pulse step modulator[J]. High Power Laser and Particle Beams, 2016, 28: 015004 doi: 10.11884/HPLPB201628.015004
    [11]
    芮军辉, 高宗球, 郭斐, 等. 低杂波电流驱动阴极高压电源系统的优化与实现[J]. 强激光与粒子束, 2021, 33:026002 doi: 10.11884/HPLPB202133.200152

    Rui Junhui, Gao Zongqiu, Guo Fei, et al. Optimization and realization of low hybrid current drive cathode high voltage power supply system[J]. High Power Laser and Particle Beams, 2021, 33: 026002 doi: 10.11884/HPLPB202133.200152
    [12]
    夏于洋, 李青, 毛晓惠. PSM高压电源干式变压器的热分析计算[J]. 强激光与粒子束, 2020, 32:025008 doi: 10.11884/HPLPB202032.190294

    Xia Yuyang, Li Qing, Mao Xiaohui. Thermal analysis calculation of dry-type transformer in PSM high voltage power supply[J]. High Power Laser and Particle Beams, 2020, 32: 025008 doi: 10.11884/HPLPB202032.190294
    [13]
    Sotnikov O, Ivanov A, Belchenko Y, et al. Development of high-voltage negative ion based neutral beam injector for fusion devices[J]. Nuclear Fusion, 2021, 61: 116017. doi: 10.1088/1741-4326/ac175a
    [14]
    Zhang Xueliang, Zhang Ming, Ma Shaoxiang, et al. Design of acceleration grid power supply for CFETR negative-ion-based neutral beam injection prototype[J]. Fusion Engineering and Design, 2019, 146: 2592-2597. doi: 10.1016/j.fusengdes.2019.04.050
    [15]
    Wang Dongyu, Zhang Ming, Ma Shaoxiang, et al. Design and control of the accelerator grid power supply-conversion system applied to CFETR N-NBI prototype[J]. Plasma Science and Technology, 2020, 22: 085601. doi: 10.1088/2058-6272/ab8d9c
    [16]
    Zhang Ming, Ma Xiao, Ma Shaoxiang, et al. Design of the control system of acceleration grid power supply for CFETR N-NBI prototype[J]. Fusion Engineering and Design, 2019, 146: 1712-1715. doi: 10.1016/j.fusengdes.2019.03.022
    [17]
    何开心, 李青, 夏于洋, 等. 基于200 kV/15 A逆变型直流高压电源的控制策略[J]. 强激光与粒子束, 2023, 35:066002 doi: 10.11884/HPLPB202335.220355

    He Kaixin, Li Qing, Xia Yuyang, et al. Direct current high voltage power control strategy based on 200 kV/15 A inverter[J]. High Power Laser and Particle Beams, 2023, 35: 066002 doi: 10.11884/HPLPB202335.220355
    [18]
    张明, 周澜, 王姝, 等. 基于负离子的中性束注入器加速极逆变型高压电源控制策略[J]. 强激光与粒子束, 2019, 31:040012 doi: 10.11884/HPLPB201931.180265

    Zhang Ming, Zhou Lan, Wang Shu, et al. Control strategy for inverter type high voltage power supply for negative-ion based neutral beam injector[J]. High Power Laser and Particle Beams, 2019, 31: 040012 doi: 10.11884/HPLPB201931.180265
    [19]
    Watanabe K, Yamanaka H, Maejima T, et al. Development of a DC −1 MV insulating transformer for neutral beam injectors[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2017, 12(2): 214-220. doi: 10.1002/tee.22368
    [20]
    Takahashi A, Tanaka T, Fujita H, et al. Development of –1 MV DC filter and high-voltage DC measurement systems for ITER NBI[J]. Electrical Engineering in Japan, 2018, 204(3): 41-52. doi: 10.1002/eej.23101
    [21]
    Boldrin M, Dalla Palma M, Milani F. Design issues of the High Voltage platform and feedthrough for the ITER NBI Ion Source[J]. Fusion Engineering and Design, 2009, 84(2/6): 470-474.
    [22]
    Tobari H, Kashiwagi M, Watanabe K, et al. Progress on design and manufacturing of dc ultra-high voltage component for ITER NBI[J]. Fusion Engineering and Design, 2017, 123: 309-312. doi: 10.1016/j.fusengdes.2017.05.017
    [23]
    Tobari H, Watanabe K, Kashiwagi M, et al. DC ultrahigh voltage insulation technology for 1 MV power supply system for fusion application[J]. IEEE Transactions on Plasma Science, 2017, 45(1): 162-169. doi: 10.1109/TPS.2016.2632762
    [24]
    陈曦, 王瑾, 肖岚. 用于高压高频整流的二极管串联均压问题[J]. 电工技术学报, 2012, 27(10):207-214 doi: 10.19595/j.cnki.1000-6753.tces.2012.10.030

    Chen Xi, Wang Jin, Xiao Lan. Research on the voltage sharing in series coupled diodes for high voltage and high frequency rectifier applications[J]. Transactions of China Electrotechnical Society, 2012, 27(10): 207-214 doi: 10.19595/j.cnki.1000-6753.tces.2012.10.030
    [25]
    王栋煜. CFETR N-NBI加速极电源功率变换级关键技术研究[D]. 武汉: 华中科技大学, 2021: 43-44

    Wang Dongyu. Research on key technologies of the acceleration grid power supply-conversion system of CFETR N-NBI[D]. Wuhan: Huazhong University of Science and Technology, 2021: 43-44
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article views (600) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return