Volume 36 Issue 3
Feb.  2024
Turn off MathJax
Article Contents
Zhou Fugui, Zhang Dian, Zhang Jun, et al. A technology for generating intense annular electron beam with variable beam radius and its application[J]. High Power Laser and Particle Beams, 2024, 36: 033009. doi: 10.11884/HPLPB202436.230394
Citation: Zhou Fugui, Zhang Dian, Zhang Jun, et al. A technology for generating intense annular electron beam with variable beam radius and its application[J]. High Power Laser and Particle Beams, 2024, 36: 033009. doi: 10.11884/HPLPB202436.230394

A technology for generating intense annular electron beam with variable beam radius and its application

doi: 10.11884/HPLPB202436.230394
  • Received Date: 2023-11-06
  • Accepted Date: 2024-01-29
  • Rev Recd Date: 2024-01-28
  • Available Online: 2024-02-05
  • Publish Date: 2024-02-29
  • Intense annular electron beam with variable beam radius has important applications in high power microwave (HPM) generation devices with cross-band frequency hopping. This paper proposes a technology of changing the radius of annular electron beam based on the adjustment of the externally guided magnetic field. The core components of the technology include an annular cathode, an anode, an electron beam transfer channel, two transmission channels and an external guide magnet (a three-segment solenoid) system. When the current of the solenoid differs, the solenoid system can generate different magnetic field distributions. In the particle-in-cell (PIC) simulation, when the currents of the three segments are 1 025 A, 107 A, 107 A and 300 A, 300 A, 0 A respectively, the solenoid generates two magnetic fields to achieve the change of the electron beam radius. Based on the theory of single particle motion, this paper deduces the expression of the trajectory of electron beam guided by the gradient magnetic field, explains the principle of the electron beam radius variation under the gradient magnetic field, and investigates the influence of the slope and range of the gradient magnetic field on the electron beam radius. In the cross-band HPM devices simulation, the output power of X-band is 1.6 GW, the frequency is 8.2 GHz, and the power efficiency is 40%. The Ku-band has achieved a power output of 1.5 GW, a frequency of 14.4 GHz, and a power efficiency of 38%.
  • loading
  • [1]
    Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 3rd ed. Boca Raton: CRC Press, 2015: 466.
    [2]
    Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 2nd ed. Boca Raton: CRC Press, 2007.
    [3]
    Zhou Fugui, Zhang Dian, Zhang Jun, et al. A novel cross-band frequency hopping gigawatts class high-power microwave oscillator[J]. IEEE Transactions on Electron Devices, 2022, 69(12): 7079-7082. doi: 10.1109/TED.2022.3218493
    [4]
    Zhou Fugui, Zhang Dian, Zhang Jun, et al. Design of a cross-band frequency hopping high power microwave oscillator with permanent magnet package[J]. Physics of Plasmas, 2023, 30: 103504. doi: 10.1063/5.0167193
    [5]
    Gao Xingfu, Song Lili, He Juntao, et al. A novel dual-band nested transit time oscillator[J]. AIP Advances, 2021, 11: 095215. doi: 10.1063/5.0062112
    [6]
    Zhang Jun, Zhang Dian, Fan Yuwei, et al. Progress in narrowband high-power microwave sources[J]. Physics of Plasmas, 2020, 27: 010501. doi: 10.1063/1.5126271
    [7]
    Zhang Peng, Ge Xingjun, Dang Fangchao, et al. A high-efficiency dual-band relativistic Cerenkov oscillator based on dual electron beams[J]. Physics of Plasmas, 2019, 26: 103501. doi: 10.1063/1.5115516
    [8]
    Wang Ting, Zhang Jiande, Qian Baoliang, et al. Dual-band relativistic backward wave oscillators based on a single beam and dual beams[J]. Physics of Plasmas, 2010, 17: 043107. doi: 10.1063/1.3368864
    [9]
    Wang Ting, Qian Baoliang, Zhang Jiande, et al. Preliminary experimental investigation of a dual-band relativistic backward wave oscillator with dual beams[J]. Physics of Plasmas, 2011, 18: 013107. doi: 10.1063/1.3537818
    [10]
    Zhang Qiang, Yuan Chengwei, Liu Lie. A dual-band coaxial waveguide mode converter for high-power microwave applications[J]. Chinese Physics Letters, 2011, 28: 068401. doi: 10.1088/0256-307X/28/6/068401
    [11]
    刘锡三. 强流粒子束及其应用[M]. 北京: 国防工业出版社, 2007

    Liu Xisan. Intense particle beams and its applications[M]. Beijing: National Defense Industry Press, 2007
    [12]
    徐启福. 强流二极管中等离子体特性的研究[D]. 长沙: 国防科学技术大学, 2012

    Xu Qifu. Characteristics of plasma in high-current electron beam diode[D]. Changsha: National University of Defense Technology, 2012
    [13]
    罗志成. 强流二极管阴阳极等离子体特性及其对相对论返波振荡器影响研究[D]. 长沙: 国防科技大学, 2019

    Luo Zhicheng. Cathode and anode plasma research of intense diode and influence on relativistic backward wave oscillator[D]. Changsha: National University of Defense Technology, 2019
    [14]
    杨建华, 张亚洲, 舒挺, 等. 强流相对论环形电子束在低磁场中传输分析[J]. 强激光与粒子束, 2005, 17(3):412-416

    Yang Jianhua, Zhang Yazhou, Shu Ting, et al. Analysis of intense relativistic electron beams transportation in low magnetic field[J]. High Power Laser and Particle Beams, 2005, 17(3): 412-416
    [15]
    Chen F F. 等离子体物理学导论[M]. 林光海, 译. 北京: 科学出版社, 2016

    Chen F F. Introduction to plasma physics[M]. Lin Guanghai, trans. Beijing: Science Press, 2016
    [16]
    曹亦兵. 基于渡越辐射新型高功率微波源的研究[D]. 长沙: 国防科学技术大学, 2012

    Cao Yibing. Investigation of a novel high-power microwave source based on transition radiation effect[D]. Changsha: National University of Defense Technology, 2012
    [17]
    陈思遥. V波段同轴Cerenkov型高功率微波振荡器研究[D]. 长沙: 国防科技大学, 2021

    Chen Siyao. Investigation on V-band coaxial Cerenkov high power microwave oscillator[D]. Changsha: National University of Defense Technology, 2021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article views (681) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return