Volume 36 Issue 6
May  2024
Turn off MathJax
Article Contents
Luo Xin, Chen Qiangshen, Yuan Chenyuan, et al. Phase measurement of vortex beam after underwater transmission based on heterodyne interference[J]. High Power Laser and Particle Beams, 2024, 36: 061003. doi: 10.11884/HPLPB202436.240027
Citation: Luo Xin, Chen Qiangshen, Yuan Chenyuan, et al. Phase measurement of vortex beam after underwater transmission based on heterodyne interference[J]. High Power Laser and Particle Beams, 2024, 36: 061003. doi: 10.11884/HPLPB202436.240027

Phase measurement of vortex beam after underwater transmission based on heterodyne interference

doi: 10.11884/HPLPB202436.240027
  • Received Date: 2024-01-20
  • Accepted Date: 2024-05-08
  • Rev Recd Date: 2024-05-08
  • Available Online: 2024-05-11
  • Publish Date: 2024-05-11
  • When a vortex beam propagates in a turbulent medium, the phase will be distorted by the influence of turbulent motion. In this paper, a point pixel phase extraction method based on heterodyne interference is proposed. By collecting the relative phase of each point's interference fringes in a period, the phase distribution of a vortex beam is reconstructed after its turbulent transmission under water. The random phase screen is generated by the power spectrum inversion method, and the transmission simulation of the vortex beams under different turbulence is completed. The result shows that the distortion increases with the increase of turbulence intensity. An experimental device was built to realize the phase measurement of vortex beams in underwater environments. The experimental results show that when a vortex beam is transmitted in turbulent water, its complex amplitude distribution undergoes a relatively complicated transmission process, and its intensity distribution and phase are distorted. The method proposed in this paper can accurately measure the complex phase distribution of a vortex beam and effectively identify its topological charges.
  • loading
  • [1]
    Guo Jinmiao, Zheng Shijie, Zhou Kainan, et al. Measurement of real phase distribution of a vortex beam propagating in free space based on an improved heterodyne interferometer[J]. Applied Physics Letters, 2021, 119: 023504. doi: 10.1063/5.0054755
    [2]
    Hu Juntao, Lan Yanping, Fan Haihao, et al. Generation and manipulation of multi-twisted beams via azimuthal shift factors[J]. Applied Physics Letters, 2022, 121: 221103. doi: 10.1063/5.0123142
    [3]
    Yang Yongzheng, Wu You, Zheng Xxinqing, et al. Particle manipulation with twisted circle Pearcey vortex beams[J]. Optics Letters, 2023, 48(13): 3535-3538. doi: 10.1364/OL.494791
    [4]
    Tian Yuhan, Wang Lulu, Duan Gaoyan, et al. Multi-trap optical tweezers based on composite vortex beams[J]. Optics Communications, 2021, 485: 126712. doi: 10.1016/j.optcom.2020.126712
    [5]
    李懋, 高文禹, 马鑫, 等. 涡旋光束对酵母菌细胞光操纵特性研究[J]. 激光杂志, 2019, 40(12):35-38

    Li Mao, Gao Wenyu, Ma Xin, et al. Study on optical manipulation of yeast cells by vortex beam[J]. Laser Journal, 2019, 40(12): 35-38
    [6]
    Wu Ziheng, Zhao Jiang, Dou Jiantai, et al. Optical trapping of multiple particles based on a rotationally-symmetric power-exponent-phase vortex beam[J]. Optics Express, 2022, 30(24): 42892-42901. doi: 10.1364/OE.476031
    [7]
    Yin Xiaojin, Hao Pengqi, Zhang Yupei, et al. Propagation of noninteger cylindrical vector vortex beams in a gradient-index fiber[J]. Optics Letters, 2023, 48(9): 2484-2487. doi: 10.1364/OL.489429
    [8]
    Chib S, Khannous F, Belafhal A. Propagation of General Model vortex higher-order cosh-Gaussian beam in maritime turbulence[J]. Optical and Quantum Electronics, 2023, 55: 971. doi: 10.1007/s11082-023-05239-0
    [9]
    Zhai Shuang, Zhu Yun, Zhang Yixin, et al. Effects of oceanic turbulence on orbital angular momenta of optical communications[J]. Journal of Marine Science and Engineering, 2020, 8: 869. doi: 10.3390/jmse8110869
    [10]
    Dai Chuansheng, Zhang Yimin, Tao Runxia, et al. The nonlinear propagation of cylindrical vector beams in an optical fiber[J]. Optics & Laser Technology, 2020, 130: 106336.
    [11]
    Shen Yijie, Wang Xuejiao, Xie Zhenwei, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities [J]. Light: Science & Applications, 2019, 8: 90.
    [12]
    Kozawa Y, Matsunaga D, Sato S. Superresolution imaging via superoscillation focusing of a radially polarized beam[J]. Optica, 2018, 5(2): 86-92. doi: 10.1364/OPTICA.5.000086
    [13]
    Zhu Xiangyang, Qiu Song, Liu Tong, et al. Rotating axis measurement based on rotational Doppler effect of spliced superposed optical vortex[J]. Nanophotonics, 2023, 12(12): 2157-2169. doi: 10.1515/nanoph-2023-0090
    [14]
    Wang Haiping, Tang Liqin, Ma Jina, et al. Optical clearing and shielding with fan-shaped vortex beams[J]. APL Photonics, 2020, 5: 016102. doi: 10.1063/1.5133100
    [15]
    Bulygin A D, Geints Y E, Geints I Y. Vortex beam in a turbulent Kerr medium for atmospheric communication[J]. Photonics, 2023, 10: 856. doi: 10.3390/photonics10070856
    [16]
    Villalba N, Melo C, Ayala S, et al. Transmission of optical communication signals through ring core fiber using perfect vortex beams[J]. Optics Express, 2023, 31(24): 40113-40123. doi: 10.1364/OE.503740
    [17]
    Hu Xiansheng, Gezhi Zhaxibamao, Sasaki O, et al. Topological charge measurement of vortex beams by phase-shifting digital hologram technology[J]. Applied Optics, 2018, 57(35): 10300-10304. doi: 10.1364/AO.57.010300
    [18]
    Ding Xi, Feng Guoying, Zhou Shouhuan. Detection of phase distribution of vortex beams based on low frequency heterodyne interferometry with a common commercial CCD camera[J]. Applied Physics Letters, 2020, 11: 031106.
    [19]
    潘孙翔, 赵生妹, 王乐, 等. 水下轨道角动量态传输特性的实验研究[J]. 光学学报, 2018, 38:0606004 doi: 10.3788/AOS201838.0606004

    Pan Sunxiang, Zhao Shengmei, Wang Le, et al. Experimental investigation of underwater propagation characteristics of orbital angular momentum[J]. Acta Optica Sinica, 2018, 38: 0606004 doi: 10.3788/AOS201838.0606004
    [20]
    Zhao Shengmei, Zhang Wenhao, Wang Le, et al. Propagation and self-healing properties of Bessel-Gaussian beam carrying orbital angular momentum in an underwater environment[J]. Scientific Reports, 2019, 9: 2025. doi: 10.1038/s41598-018-38409-2
    [21]
    Avramov-Zamurovic S, Nelson C, Esposito J M. Experimentally evaluating beam scintillation and vortex structure as a function of topological charge in underwater optical turbulence[J]. Optics Communications, 2022, 513: 128079. doi: 10.1016/j.optcom.2022.128079
    [22]
    Pan Yuqi, Zhao Minglin, Zhang Mingming, et al. Propagation properties of rotationally-symmetric power-exponent-phase vortex beam through oceanic turbulence[J]. Optics & Laser Technology, 2023, 159: 109024.
    [23]
    王明军, 余文辉, 黄朝军. 水下拉盖尔-高斯涡旋光束及其叠加态传输特性[J]. 光学学报, 2023, 43:0626001 doi: 10.3788/AOS220992

    Wang Mingjun, Yu Wenhui, Huang Chaojun. Transmission characteristics of underwater Laguerre-Gaussian vortex beam and its superposition states[J]. Acta Optica Sinica, 2023, 43: 0626001 doi: 10.3788/AOS220992
    [24]
    Falits A V, Kuskov V V, Banakh V A. Propagation of vortex optical beams through artificial convective turbulence[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2023, 302: 108568. doi: 10.1016/j.jqsrt.2023.108568
    [25]
    Wu Ran, Chen Jun, Zhang Yingying, et al. Revealing the orbital angular momentum spectrum and correlation phase of optical vortices with wander perturbations and spiral offsets[J]. Journal of Lightwave Technology, 2022, 40(7): 2008-2014. doi: 10.1109/JLT.2021.3133842
    [26]
    Zhang Hui, Ding Wenqiang, Fu Peng, et al. Reducing orbital angular momentum crosstalk of the Bessel–Gaussian beam for underwater optical communications[J]. Journal of Optics, 2020, 22: 065702. doi: 10.1088/2040-8986/ab8ea1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views (666) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return