Volume 36 Issue 8
Jul.  2024
Turn off MathJax
Article Contents
Li Xinze, Zhang Bingqian, Chen Ronghua, et al. Energy deposition characteristics of tritium breeding blanket in laser inertial confinement fusion reactor[J]. High Power Laser and Particle Beams, 2024, 36: 082001. doi: 10.11884/HPLPB202436.240098
Citation: Li Xinze, Zhang Bingqian, Chen Ronghua, et al. Energy deposition characteristics of tritium breeding blanket in laser inertial confinement fusion reactor[J]. High Power Laser and Particle Beams, 2024, 36: 082001. doi: 10.11884/HPLPB202436.240098

Energy deposition characteristics of tritium breeding blanket in laser inertial confinement fusion reactor

doi: 10.11884/HPLPB202436.240098
  • Received Date: 2024-03-18
  • Accepted Date: 2024-06-06
  • Rev Recd Date: 2024-06-06
  • Available Online: 2024-06-13
  • Publish Date: 2024-07-04
  • This study presents a conceptual design of a 200 MW laser Inertial Confinement Fusion (ICF) reactor blanket, referring to fusion reactor technologies. The blanket employs a dual-coolant structure consisting of supercritical CO2 (S-CO2) and liquid lead-lithium (PbLi). Transient and steady-state coupled models are established to calculate the temperature distribution and variations within the blanket. The implosion of the pellets is computed using MULTI-IFE. The nuclear heat coupling part is based on the Monte Carlo program OpenMC and self-programmed heat transfer models to calculate the blanket’s structure, cooling, and tritium production. The research findings indicate that the nuclear heat coupling model can complete preliminary calculations and analysis of the blanket. Periodic transient loads cause oscillations in the temperature of the first wall surface, but the temperature inside the blanket eventually converges to the steady-state calculation results. The reactor size significantly affects temperature reduction and oscillation effects, but it still requires xenon to flat radiation power peak. Both tritium production and energy export from the blanket are influenced by the reactor cavity size and the size of the breeding zone. Under the 200 MW operating conditions, it shows that a 3 m radius and a 0.25 m breeding zone size best meet the requirements.
  • loading
  • [1]
    王淦昌. 利用大能量大功率的光激射器产生中子的建议[J]. 原子能科学技术, 1988(1):7-12

    Wang Ganchang. A proposal of using high energy and high power laser to produce neutrons[J]. Atomic Energy Science and Technology, 1988(1): 7-12
    [2]
    郑万国, 齐红基. 人类首次实现聚变“点火”, 激光聚变取得历史性突破[J]. 人工晶体学报, 2023, 52(1):1-7 doi: 10.3969/j.issn.1000-985X.2023.01.001

    Zheng Wanguo, Qi Hongji. An exclusive interview with ZHENG Wanguo on the “Ignition” milestone in human history[J]. Journal of Synthetic Crystals, 2023, 52(1): 1-7 doi: 10.3969/j.issn.1000-985X.2023.01.001
    [3]
    Meier W R, Dunne A M, Kramer K J, et al. Fusion technology aspects of laser inertial fusion energy (LIFE)[J]. Fusion Engineering and Design, 2014, 89(9/10): 2489-2492.
    [4]
    Páramo A R, Sordo F, Garoz D, et al. Transmission final lenses in the HiPER laser fusion power plant: system design for temperature control[J]. Nuclear Fusion, 2014, 54: 123019. doi: 10.1088/0029-5515/54/12/123019
    [5]
    盛倩, 吴姝琴, 王晓宇, 等. 中国氦冷固态增殖剂实验包层模块材料研究进展[J]. 原子能科学技术, 2022, 56(7):1402-1412 doi: 10.7538/yzk.2022.youxian.0104

    Sheng Qian, Wu Shuqin, Wang Xiaoyu, et al. Research progress on material of helium cooled ceramic breeder test blanket module in China[J]. Atomic Energy Science and Technology, 2022, 56(7): 1402-1412 doi: 10.7538/yzk.2022.youxian.0104
    [6]
    Zhang Dalin, Liu Limin, Liu Minghao, et al. Review of conceptual design and fundamental research of molten salt reactors in China[J]. International Journal of Energy Research, 2018, 42(5): 1834-1848. doi: 10.1002/er.3979
    [7]
    Chen Lei, Jiang Kecheng, Ma Xuebin, et al. Conceptual design of the supercritical CO2 cooled lithium lead blanket for CFETR[J]. Fusion Engineering and Design, 2021, 173: 112800. doi: 10.1016/j.fusengdes.2021.112800
    [8]
    Miura S, Nakamura K, Akahoshi E, et al. Lithium-lead corrosion behavior of zirconium oxide coating after heavy-ion irradiation[J]. Fusion Engineering and Design, 2021, 170: 112536. doi: 10.1016/j.fusengdes.2021.112536
    [9]
    严兵. 纳米ZrO2热障涂层隔热性能研究[J]. 战术导弹技术, 2014(3):95-98

    Yan Bing. Research on heat-insulating property of nano-zirconia thermal barrier coatings[J]. Tactical Missile Technology, 2014(3): 95-98
    [10]
    Ramis R, Meyer-ter-Vehn J. MULTI-IFE—A one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations[J]. Computer Physics Communications, 2016, 203: 226-237. doi: 10.1016/j.cpc.2016.02.014
    [11]
    Sacks R, Moses G, Tang V, et al. Parameter study of an inertial fusion energy chamber response using the 1-D BUCKY radiation hydrodynamics code[J]. Fusion Science and Technology, 2014, 66(2): 349-357. doi: 10.13182/FST14-789
    [12]
    戴涛, 曹良志, 贺清明, 等. 中国聚变工程试验堆包层的核热耦合效应研究[J]. 原子能科学技术, 2022, 56(1):136-145 doi: 10.7538/yzk.2021.youxian.0519

    Dai Tao, Cao Liangzhi, He Qingming, et al. Research on neutronics/thermal-hydraulics coupling effect of CFETR blanket[J]. Atomic Energy Science and Technology, 2022, 56(1): 136-145 doi: 10.7538/yzk.2021.youxian.0519
    [13]
    Cao Qixiang, Wang Xiaoyu, Wu Xinghua, et al. Neutronics and shielding design of CFETR HCCB blanket[J]. Fusion Engineering and Design, 2021, 172: 112918. doi: 10.1016/j.fusengdes.2021.112918
    [14]
    李铸伦, 谢金森, 徐士坤, 等. 基于OpenMC的瞬发中子衰减常数计算模块开发与验证[J]. 原子能科学技术, 2022, 56(9):1906-1914 doi: 10.7538/yzk.2021.youxian.0667

    Li Zhulun, Xie Jinsen, Xu Shikun, et al. Development and verification of calculation module for prompt neutron attenuation constant based on OpenMC[J]. Atomic Energy Science and Technology, 2022, 56(9): 1906-1914 doi: 10.7538/yzk.2021.youxian.0667
    [15]
    Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow[J]. International Chemical Engineering, 1976, 16(2): 359-368.
    [16]
    Churchill S W. Friction-factor equation spans all fluid-flow regimes[J]. Chemical Engineering, 1977, 84(24): 91-92.
    [17]
    Liu Limin, Zhang Dalin, Song Jian, et al. Modification and application of Relap5 Mod3 code to several types of nonwater-cooled advanced nuclear reactors[J]. International Journal of Energy Research, 2018, 42(1): 221-235. doi: 10.1002/er.3949
    [18]
    National Institute of Standards and Technology. NIST Chemistry WebBook: NIST Standard Reference Database Number 69[DB]. 2023.
    [19]
    Wang Wenjia, Cheng Xiaoman, Yu Yi, et al. Implementation of CO2 and PbLi as working fluids in RELAP5/MOD3.3 towards accident analysis of COOL blanket for CFETR[J]. Fusion Engineering and Design, 2022, 184: 113301. doi: 10.1016/j.fusengdes.2022.113301
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article views (819) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return