Turn off MathJax
Article Contents
Guo Enze, Liu Guobin, Zou Yongjie, et al. A novel local approximation approach for quantitative analysis of combat power index[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240163
Citation: Guo Enze, Liu Guobin, Zou Yongjie, et al. A novel local approximation approach for quantitative analysis of combat power index[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240163

A novel local approximation approach for quantitative analysis of combat power index

doi: 10.11884/HPLPB202436.240163
  • Received Date: 2024-05-14
  • Accepted Date: 2024-08-24
  • Rev Recd Date: 2024-08-24
  • Available Online: 2024-09-21
  • The quantitative study of combat effectiveness index is crucial for the informatization construction of the armed forces. To solve the problems of limits of quantitative research, low method accuracy, and weak robustness in the study of combat effectiveness index, and to break through the limitations of dominating complex rules, multivariate mathematical models, and strong coupling of influencing factors in the combat effectiveness index function, inspired by the mathematical analysis methods of rules in fuzzy logic theory, we proposed a local approximation based method for fitting combat effectiveness index function. Combining the powerful self-learning and self-deduction capabilities of neural networks, we constructed a corresponding quantitative calculation model based on radial basis function (RBF). Simulation comparative experiments show that the proposed method has an error rate of about 2% and 6% lower than the current best performing method using global approximation, and exhibits stronger robustness. Our method has strong practicality, can be migrated to other military fields, and has good engineering application prospects.
  • loading
  • [1]
    李璟. 战斗力解析[M]. 北京: 国防大学出版社, 2013

    Li Jing. Analysis of combat effectiveness[M]. Beijing: National Defense University Press, 2013
    [2]
    Rai R N, Bolia N. Optimal decision support for air power potential[J]. IEEE Transactions on Engineering Management, 2014, 61(2): 310-322. doi: 10.1109/TEM.2013.2293420
    [3]
    何帆, 李其祥, 黄东. 基于灰色层次模型的新型装备战斗力评估[J]. 火力与指挥控制, 2016, 41(11):129-133 doi: 10.3969/j.issn.1002-0640.2016.11.030

    He Fan, Li Qixiang, Huang Dong. Evaluation of capability of new-type equipment based on grey-AHP[J]. Fire Control & Command Control, 2016, 41(11): 129-133 doi: 10.3969/j.issn.1002-0640.2016.11.030
    [4]
    Qi Zongfeng, Wang Guosheng. Effectiveness evaluation of electronic warfare command and control system based on grey AHP method[J]. Journal of Chemical and Pharmaceutical Research, 2014, 6(7): 535-542.
    [5]
    曹冠平, 王跃利, 张立韬. 关联规则挖掘在作战实验数据分析中的应用[J]. 指挥控制与仿真, 2019, 41(2):70-74 doi: 10.3969/j.issn.1673-3819.2019.02.014

    Cao Guanping, Wang Yueli, Zhang Litao. Application of association rule mining in combat experiment data analysis[J]. Command Control & Simulation, 2019, 41(2): 70-74 doi: 10.3969/j.issn.1673-3819.2019.02.014
    [6]
    刘玮, 周华任, 黄春艳. 基于灰色-熵权法的合成旅装备战斗力评估[J]. 计算机仿真, 2023, 40(4):26-30 doi: 10.3969/j.issn.1006-9348.2023.04.006

    Liu Wei, Zhou Huaren, Huang Chunyan. Combat effectiveness evaluation of synthetic brigade equipment based on combined grey entropy weight method[J]. Computer Simulation, 2023, 40(4): 26-30 doi: 10.3969/j.issn.1006-9348.2023.04.006
    [7]
    文博宇, 胡磊, 张岐龙, 等. Dynamic trajectory quality evaluation of ballistic missiles based on TOPSIS[J]. 舰船电子对抗, 2022, 45(1):45-49

    Wen Boyu, Hu Lei, Zhang Qilong, et al. Radar emitter signal recognition based on extended residual network[J]. Shipboard Electronic Countermeasure, 2022, 45(1): 45-49
    [8]
    卜广志. 基于AOE模型的装备对作战体系的贡献率评估方法[J]. 火力与指挥控制, 2020, 45(12):18-22 doi: 10.3969/j.issn.1002-0640.2020.12.004

    Bu Guangzhi. An assessment method of armament contribution to operational system based on AOE model[J]. Fire Control & Command Control, 2020, 45(12): 18-22 doi: 10.3969/j.issn.1002-0640.2020.12.004
    [9]
    薛辉, 王源, 张天鹏, 等. 随机组合约束下的联合火力打击弹药需求预测模型[J]. 兵工学报, 2019, 40(8):1716-1724 doi: 10.3969/j.issn.1000-1093.2019.08.022

    Xue Hui, Wang Yuan, Zhang Tianpeng, et al. Demand forecasting model for joint fire strike ammunition under stochastic combination constraints[J]. Acta Armamentarii, 2019, 40(8): 1716-1724 doi: 10.3969/j.issn.1000-1093.2019.08.022
    [10]
    薛辉, 刘铁林, 张鹏. 基于损失交换比的武器装备回合战斗力指数评估[J]. 装甲兵工程学院学报, 2018, 32(2):7-12 doi: 10.3969/j.issn.1672-1497.2018.02.002

    Xue Hui, Liu Tielin, Zhang Peng. Evaluation of round combat effectiveness index for weapon equipment based on loss exchange ratio[J]. Journal of Academy of Armored Force Engineering, 2018, 32(2): 7-12 doi: 10.3969/j.issn.1672-1497.2018.02.002
    [11]
    杨鹏, 倪小清. 登陆作战的多维战斗力指数—兰彻斯特方程[J]. 舰船电子工程, 2016, 36(5):27-30 doi: 10.3969/j.issn.1627-9730.2016.05.007

    Yang Peng, Ni Xiaoqing. Lanchester equation based on multi-domain fighting index[J]. Ship Electronic Engineering, 2016, 36(5): 27-30 doi: 10.3969/j.issn.1627-9730.2016.05.007
    [12]
    董泽委, 胡起伟, 孙宝琛. 基于BP神经网络的集群装备战斗力指数评估[J]. 火力与指挥控制, 2011, 36(11):87-90 doi: 10.3969/j.issn.1002-0640.2011.11.023

    Dong Zewei, Hu Qiwei, Sun Baochen. Equipment combat power index assessment based on BP neural network[J]. Fire Control & Command Control, 2011, 36(11): 87-90 doi: 10.3969/j.issn.1002-0640.2011.11.023
    [13]
    郭恩泽, 何斌斌, 武艺楠, 等. 面向战斗力指数计算的BP神经网络设计研究[J]. 舰船电子对抗, 2024, 48(3):456-462

    Guo Enze, He Binbin, Wu Yinan, et al. Research on the design of BP neural network for calculating combat effectiveness index[J]. Shipboard Electronic Countermeasure, 2024, 48(3): 456-462
    [14]
    Goh A T C. Back-propagation neural networks for modeling complex systems[J]. Artificial Intelligence in Engineering, 1995, 9(3): 143-151. doi: 10.1016/0954-1810(94)00011-S
    [15]
    Wang Hanyu, Dong Helei, Zhang Lei, et al. Prediction of dynamic temperature rise of thermocouple sensors based on genetic algorithm-back propagation neural network[J]. IEEE Sensors Journal, 2022, 22(24): 24121-24129. doi: 10.1109/JSEN.2022.3217826
    [16]
    Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. doi: 10.1038/323533a0
    [17]
    Li He, Guo Shuxiang, Wang Hanze, et al. Subject-independent continuous estimation of sEMG-based joint angles using both multisource domain adaptation and BP neural network[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 4000910.
    [18]
    Hou J, Yao D, Wu F, et al. Online vehicle velocity prediction using an adaptive radial basis function neural network[J]. IEEE Transactions on Vehicular Technology, 2021, 70(4): 3113-3122. doi: 10.1109/TVT.2021.3063483
    [19]
    Gong Maoguo, Liu Jia, Qin A K, et al. Evolving deep neural networks via cooperative coevolution with backpropagation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 420-434. doi: 10.1109/TNNLS.2020.2978857
    [20]
    Gao Xinyu, Mou Jun, Banerjee S, et al. Color-gray multi-image hybrid compression–encryption scheme based on BP neural network and knight tour[J]. IEEE Transactions on Cybernetics, 2023, 53(8): 5037-5047. doi: 10.1109/TCYB.2023.3267785
    [21]
    Pan Xiuqin, Zhou Wangsheng, Lu Yong, et al. Prediction of network traffic of smart cities based on DE-BP neural network[J]. IEEE Access, 2019, 7: 55807-55816. doi: 10.1109/ACCESS.2019.2913017
    [22]
    Lu Qidong, Yang Rui, Zhong Maiying, et al. An improved fault diagnosis method of rotating machinery using sensitive features and RLS-BP neural network[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4): 1585-1593. doi: 10.1109/TIM.2019.2913057
    [23]
    Zhao Liang, Yin Zhihong, Yu Keping, et al. A fuzzy logic-based intelligent multiattribute routing scheme for two-layered SDVNs[J]. IEEE Transactions on Network and Service Management, 2022, 19(4): 4189-4200. doi: 10.1109/TNSM.2022.3202741
    [24]
    Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366. doi: 10.1016/0893-6080(89)90020-8
    [25]
    LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
    [26]
    Xu Bing, Wang Naiyan, Chen Tianqi, et al. Empirical evaluation of rectified activations in convolutional network[DB/OL]. arXiv preprint arXiv: 1505.00853, 2015.
    [27]
    Nitta T, Kuroe Y. Hyperbolic gradient operator and hyperbolic back-propagation learning algorithms[J]. IEEE transactions on neural networks and learning systems, 2017, 29(5): 1689-1702.
    [28]
    Freitas A A. Comprehensible classification models: a position paper[J]. ACM SIGKDD Explorations Newsletter, 2013, 15(1): 1-10.
    [29]
    Lakkaraju H, Bach S H, Leskovec J. Interpretable decision sets: a joint framework for description and prediction[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016: 1675-1684.
    [30]
    Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1985, SMC-15(1): 116-132. doi: 10.1109/TSMC.1985.6313399
    [31]
    Fritzke B. Fast learning with incremental RBF networks[J]. Neural Processing Letters, 1994, 1(1): 2-5. doi: 10.1007/BF02312392
    [32]
    Jin Yaochu, Sendhoff B. Extracting interpretable fuzzy rules from RBF networks[J]. Neural Processing Letters, 2003, 17(2): 149-164. doi: 10.1023/A:1023642126478
    [33]
    Morán A, Parrilla L, Roca M, et al. Digital implementation of radial basis function neural networks based on stochastic computing[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2023, 13(1): 257-269. doi: 10.1109/JETCAS.2022.3231708
    [34]
    Su Bowen, Zhang Fan, Huang Panfeng. Stability analysis and RBF neural network control of second-order nonlinear satellite system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 4575-4589. doi: 10.1109/TAES.2023.3243582
    [35]
    Wang Jinpeng, Zhou Yang, Guan Xin, et al. A hybrid predicting model for the daily photovoltaic output based on fuzzy clustering of meteorological data and joint algorithm of GAPS and RBF neural network[J]. IEEE Access, 2022, 10: 30005-30017. doi: 10.1109/ACCESS.2022.3159655
    [36]
    Liu Xin, He Hai. Fault diagnosis for TE process using RBF neural network[J]. IEEE Access, 2021, 9: 118453-118460. doi: 10.1109/ACCESS.2021.3107360
    [37]
    Fan Fenglei, Wang Ge. Fuzzy logic interpretation of quadratic networks[J]. Neurocomputing, 2020, 374: 10-21. doi: 10.1016/j.neucom.2019.09.001
    [38]
    Fang Baofu, Zheng Caiming, Wang Hao, et al. Two-stream fused fuzzy deep neural network for multiagent learning[J]. IEEE Transactions on Fuzzy Systems, 2023, 31(2): 511-520. doi: 10.1109/TFUZZ.2022.3214001
    [39]
    Xu Tao, Zhao Youqun, Wang Qiuwei, et al. An adaptive inverse model control method of vehicle yaw stability with active front steering based on adaptive RBF neural networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(11): 13873-13887.
    [40]
    Han Honggui, Wu Xiaolong, Zhang Lu, et al. Self-organizing RBF neural network using an adaptive gradient multiobjective particle swarm optimization[J]. IEEE Transactions on Cybernetics, 2019, 49(1): 69-82. doi: 10.1109/TCYB.2017.2764744
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article views (287) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return