Citation: | Guo Enze, Liu Guobin, Zou Yongjie, et al. A novel local approximation approach for quantitative analysis of combat power index[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240163 |
[1] |
李璟. 战斗力解析[M]. 北京: 国防大学出版社, 2013
Li Jing. Analysis of combat effectiveness[M]. Beijing: National Defense University Press, 2013
|
[2] |
Rai R N, Bolia N. Optimal decision support for air power potential[J]. IEEE Transactions on Engineering Management, 2014, 61(2): 310-322. doi: 10.1109/TEM.2013.2293420
|
[3] |
何帆, 李其祥, 黄东. 基于灰色层次模型的新型装备战斗力评估[J]. 火力与指挥控制, 2016, 41(11):129-133 doi: 10.3969/j.issn.1002-0640.2016.11.030
He Fan, Li Qixiang, Huang Dong. Evaluation of capability of new-type equipment based on grey-AHP[J]. Fire Control & Command Control, 2016, 41(11): 129-133 doi: 10.3969/j.issn.1002-0640.2016.11.030
|
[4] |
Qi Zongfeng, Wang Guosheng. Effectiveness evaluation of electronic warfare command and control system based on grey AHP method[J]. Journal of Chemical and Pharmaceutical Research, 2014, 6(7): 535-542.
|
[5] |
曹冠平, 王跃利, 张立韬. 关联规则挖掘在作战实验数据分析中的应用[J]. 指挥控制与仿真, 2019, 41(2):70-74 doi: 10.3969/j.issn.1673-3819.2019.02.014
Cao Guanping, Wang Yueli, Zhang Litao. Application of association rule mining in combat experiment data analysis[J]. Command Control & Simulation, 2019, 41(2): 70-74 doi: 10.3969/j.issn.1673-3819.2019.02.014
|
[6] |
刘玮, 周华任, 黄春艳. 基于灰色-熵权法的合成旅装备战斗力评估[J]. 计算机仿真, 2023, 40(4):26-30 doi: 10.3969/j.issn.1006-9348.2023.04.006
Liu Wei, Zhou Huaren, Huang Chunyan. Combat effectiveness evaluation of synthetic brigade equipment based on combined grey entropy weight method[J]. Computer Simulation, 2023, 40(4): 26-30 doi: 10.3969/j.issn.1006-9348.2023.04.006
|
[7] |
文博宇, 胡磊, 张岐龙, 等. Dynamic trajectory quality evaluation of ballistic missiles based on TOPSIS[J]. 舰船电子对抗, 2022, 45(1):45-49
Wen Boyu, Hu Lei, Zhang Qilong, et al. Radar emitter signal recognition based on extended residual network[J]. Shipboard Electronic Countermeasure, 2022, 45(1): 45-49
|
[8] |
卜广志. 基于AOE模型的装备对作战体系的贡献率评估方法[J]. 火力与指挥控制, 2020, 45(12):18-22 doi: 10.3969/j.issn.1002-0640.2020.12.004
Bu Guangzhi. An assessment method of armament contribution to operational system based on AOE model[J]. Fire Control & Command Control, 2020, 45(12): 18-22 doi: 10.3969/j.issn.1002-0640.2020.12.004
|
[9] |
薛辉, 王源, 张天鹏, 等. 随机组合约束下的联合火力打击弹药需求预测模型[J]. 兵工学报, 2019, 40(8):1716-1724 doi: 10.3969/j.issn.1000-1093.2019.08.022
Xue Hui, Wang Yuan, Zhang Tianpeng, et al. Demand forecasting model for joint fire strike ammunition under stochastic combination constraints[J]. Acta Armamentarii, 2019, 40(8): 1716-1724 doi: 10.3969/j.issn.1000-1093.2019.08.022
|
[10] |
薛辉, 刘铁林, 张鹏. 基于损失交换比的武器装备回合战斗力指数评估[J]. 装甲兵工程学院学报, 2018, 32(2):7-12 doi: 10.3969/j.issn.1672-1497.2018.02.002
Xue Hui, Liu Tielin, Zhang Peng. Evaluation of round combat effectiveness index for weapon equipment based on loss exchange ratio[J]. Journal of Academy of Armored Force Engineering, 2018, 32(2): 7-12 doi: 10.3969/j.issn.1672-1497.2018.02.002
|
[11] |
杨鹏, 倪小清. 登陆作战的多维战斗力指数—兰彻斯特方程[J]. 舰船电子工程, 2016, 36(5):27-30 doi: 10.3969/j.issn.1627-9730.2016.05.007
Yang Peng, Ni Xiaoqing. Lanchester equation based on multi-domain fighting index[J]. Ship Electronic Engineering, 2016, 36(5): 27-30 doi: 10.3969/j.issn.1627-9730.2016.05.007
|
[12] |
董泽委, 胡起伟, 孙宝琛. 基于BP神经网络的集群装备战斗力指数评估[J]. 火力与指挥控制, 2011, 36(11):87-90 doi: 10.3969/j.issn.1002-0640.2011.11.023
Dong Zewei, Hu Qiwei, Sun Baochen. Equipment combat power index assessment based on BP neural network[J]. Fire Control & Command Control, 2011, 36(11): 87-90 doi: 10.3969/j.issn.1002-0640.2011.11.023
|
[13] |
郭恩泽, 何斌斌, 武艺楠, 等. 面向战斗力指数计算的BP神经网络设计研究[J]. 舰船电子对抗, 2024, 48(3):456-462
Guo Enze, He Binbin, Wu Yinan, et al. Research on the design of BP neural network for calculating combat effectiveness index[J]. Shipboard Electronic Countermeasure, 2024, 48(3): 456-462
|
[14] |
Goh A T C. Back-propagation neural networks for modeling complex systems[J]. Artificial Intelligence in Engineering, 1995, 9(3): 143-151. doi: 10.1016/0954-1810(94)00011-S
|
[15] |
Wang Hanyu, Dong Helei, Zhang Lei, et al. Prediction of dynamic temperature rise of thermocouple sensors based on genetic algorithm-back propagation neural network[J]. IEEE Sensors Journal, 2022, 22(24): 24121-24129. doi: 10.1109/JSEN.2022.3217826
|
[16] |
Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. doi: 10.1038/323533a0
|
[17] |
Li He, Guo Shuxiang, Wang Hanze, et al. Subject-independent continuous estimation of sEMG-based joint angles using both multisource domain adaptation and BP neural network[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 4000910.
|
[18] |
Hou J, Yao D, Wu F, et al. Online vehicle velocity prediction using an adaptive radial basis function neural network[J]. IEEE Transactions on Vehicular Technology, 2021, 70(4): 3113-3122. doi: 10.1109/TVT.2021.3063483
|
[19] |
Gong Maoguo, Liu Jia, Qin A K, et al. Evolving deep neural networks via cooperative coevolution with backpropagation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 420-434. doi: 10.1109/TNNLS.2020.2978857
|
[20] |
Gao Xinyu, Mou Jun, Banerjee S, et al. Color-gray multi-image hybrid compression–encryption scheme based on BP neural network and knight tour[J]. IEEE Transactions on Cybernetics, 2023, 53(8): 5037-5047. doi: 10.1109/TCYB.2023.3267785
|
[21] |
Pan Xiuqin, Zhou Wangsheng, Lu Yong, et al. Prediction of network traffic of smart cities based on DE-BP neural network[J]. IEEE Access, 2019, 7: 55807-55816. doi: 10.1109/ACCESS.2019.2913017
|
[22] |
Lu Qidong, Yang Rui, Zhong Maiying, et al. An improved fault diagnosis method of rotating machinery using sensitive features and RLS-BP neural network[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4): 1585-1593. doi: 10.1109/TIM.2019.2913057
|
[23] |
Zhao Liang, Yin Zhihong, Yu Keping, et al. A fuzzy logic-based intelligent multiattribute routing scheme for two-layered SDVNs[J]. IEEE Transactions on Network and Service Management, 2022, 19(4): 4189-4200. doi: 10.1109/TNSM.2022.3202741
|
[24] |
Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366. doi: 10.1016/0893-6080(89)90020-8
|
[25] |
LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
|
[26] |
Xu Bing, Wang Naiyan, Chen Tianqi, et al. Empirical evaluation of rectified activations in convolutional network[DB/OL]. arXiv preprint arXiv: 1505.00853, 2015.
|
[27] |
Nitta T, Kuroe Y. Hyperbolic gradient operator and hyperbolic back-propagation learning algorithms[J]. IEEE transactions on neural networks and learning systems, 2017, 29(5): 1689-1702.
|
[28] |
Freitas A A. Comprehensible classification models: a position paper[J]. ACM SIGKDD Explorations Newsletter, 2013, 15(1): 1-10.
|
[29] |
Lakkaraju H, Bach S H, Leskovec J. Interpretable decision sets: a joint framework for description and prediction[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016: 1675-1684.
|
[30] |
Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1985, SMC-15(1): 116-132. doi: 10.1109/TSMC.1985.6313399
|
[31] |
Fritzke B. Fast learning with incremental RBF networks[J]. Neural Processing Letters, 1994, 1(1): 2-5. doi: 10.1007/BF02312392
|
[32] |
Jin Yaochu, Sendhoff B. Extracting interpretable fuzzy rules from RBF networks[J]. Neural Processing Letters, 2003, 17(2): 149-164. doi: 10.1023/A:1023642126478
|
[33] |
Morán A, Parrilla L, Roca M, et al. Digital implementation of radial basis function neural networks based on stochastic computing[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2023, 13(1): 257-269. doi: 10.1109/JETCAS.2022.3231708
|
[34] |
Su Bowen, Zhang Fan, Huang Panfeng. Stability analysis and RBF neural network control of second-order nonlinear satellite system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 4575-4589. doi: 10.1109/TAES.2023.3243582
|
[35] |
Wang Jinpeng, Zhou Yang, Guan Xin, et al. A hybrid predicting model for the daily photovoltaic output based on fuzzy clustering of meteorological data and joint algorithm of GAPS and RBF neural network[J]. IEEE Access, 2022, 10: 30005-30017. doi: 10.1109/ACCESS.2022.3159655
|
[36] |
Liu Xin, He Hai. Fault diagnosis for TE process using RBF neural network[J]. IEEE Access, 2021, 9: 118453-118460. doi: 10.1109/ACCESS.2021.3107360
|
[37] |
Fan Fenglei, Wang Ge. Fuzzy logic interpretation of quadratic networks[J]. Neurocomputing, 2020, 374: 10-21. doi: 10.1016/j.neucom.2019.09.001
|
[38] |
Fang Baofu, Zheng Caiming, Wang Hao, et al. Two-stream fused fuzzy deep neural network for multiagent learning[J]. IEEE Transactions on Fuzzy Systems, 2023, 31(2): 511-520. doi: 10.1109/TFUZZ.2022.3214001
|
[39] |
Xu Tao, Zhao Youqun, Wang Qiuwei, et al. An adaptive inverse model control method of vehicle yaw stability with active front steering based on adaptive RBF neural networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(11): 13873-13887.
|
[40] |
Han Honggui, Wu Xiaolong, Zhang Lu, et al. Self-organizing RBF neural network using an adaptive gradient multiobjective particle swarm optimization[J]. IEEE Transactions on Cybernetics, 2019, 49(1): 69-82. doi: 10.1109/TCYB.2017.2764744
|