Volume 37 Issue 2
Feb.  2025
Turn off MathJax
Article Contents
Chen Xin, Li Chen, Zhao Wei, et al. Development of a ferrite-silicon carbide hybrid high-order mode damper for accelerators[J]. High Power Laser and Particle Beams, 2025, 37: 024001. doi: 10.11884/HPLPB202537.240154
Citation: Chen Xin, Li Chen, Zhao Wei, et al. Development of a ferrite-silicon carbide hybrid high-order mode damper for accelerators[J]. High Power Laser and Particle Beams, 2025, 37: 024001. doi: 10.11884/HPLPB202537.240154

Development of a ferrite-silicon carbide hybrid high-order mode damper for accelerators

doi: 10.11884/HPLPB202537.240154
  • Received Date: 2024-05-11
  • Accepted Date: 2024-11-27
  • Rev Recd Date: 2024-11-27
  • Available Online: 2024-12-07
  • Publish Date: 2025-02-15
  • In large current accelerator beam tubes, high-frequency fields are generated when charged particles circulate within the beam pipe. To mitigate the impact on beam current, it is essential to use high-order mode damper to convert the high field energy into heat, which can then be dissipated by a cooling system. This paper presents the research, fabrication, and key performance characteristics of a hybrid high-order mode damper. The absorbing materials utilized in the damper include ferrite and silicon carbide, which can be welded to metal substrates through metallization and welding techniques. Microwave performance simulations and thermal simulations were conducted using CST and COMSOL software, respectively, leading to an optimized damper structure. Test results demonstrate that the absorption efficiency of the hybrid damper aligns closely with the calculated values in the frequency range below 1.7 GHz. However, the simulated absorption efficiency exceeds the measured results significantly above 1.7 GHz. Additionally, the vacuum leak rates, ultimate vacuum, and water resistance meet the design requirements for superconducting high-frequency cavities.
  • loading
  • [1]
    周文中, 潘卫民, 葛锐, 等. 中国散裂中子源二期双spoke超导腔设计[J]. 强激光与粒子束, 2023, 35:034004 doi: 10.11884/HPLPB202335.220266

    Zhou Wenzhong, Pan Weimin, Ge Rui, et al. Design of the China Spallation Neutron Source phase II double spoke resonator[J]. High Power Laser and Particle Beams, 2023, 35: 034004 doi: 10.11884/HPLPB202335.220266
    [2]
    蒲小云, 侯洪涛, 马震宇, 等. 上海光源500MHz超导腔水平测试[J]. 强激光与粒子束, 2019, 31:115104 doi: 10.11884/HPLPB201931.190163

    Pu Xiaoyun, Hou Hongtao, Ma Zhenyu, et al. Horizontal test of 500 MHz superconducting cavity for SSRF[J]. High Power Laser and Particle Beams, 2019, 31: 115104 doi: 10.11884/HPLPB201931.190163
    [3]
    米正辉, 沙鹏, 孙毅, 等. BEPCⅡ国产500 MHz超导腔运行综述[J]. 强激光与粒子束, 2018, 30:085103 doi: 10.11884/HPLPB201830.170485

    Mi Zhenghui, Sha Peng, Sun Yi, et al. Operation of domestic 500 MHz superconducting cavity for BEPCⅡ[J]. High Power Laser and Particle Beams, 2018, 30: 085103 doi: 10.11884/HPLPB201830.170485
    [4]
    Tajima T, Asano K, Furuya T, et al. Bonding of a microwave-absorbing ferrite, TDK IB-004 with copper for the HOM damper of the KEK B-factory SC cavities[C]//Proceedings of the 6th Workshop on RF Superconductivity. 1993: 1914-1916.
    [5]
    Terui S, Ishibashi T, Shirai M, et al. Development of ferrite higher order mode damper for SuperKEKB vacuum system[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1053: 168371. doi: 10.1016/j.nima.2023.168371
    [6]
    Tajima T, Akai K, Asano K, et al. Beam test results on HOM absorber of superconducting cavity for KEKB[C]//Proceedings of 1997 Particle Accelerator Conference. 1997: 3090-3092.
    [7]
    Tajima T, Asano K, Furuya T, et al. HOM absorbers of superconducting cavities for KEKB[C]//Proceedings of the 5th European Particle Accelerator Conference. 1996: 2127-2129.
    [8]
    Tajima T, Asano K, Furuya T, et al. Recent development of HOM absorbers for KEKB superconducting cavities[C]//Proceedings of 1997 Workshop on RF Superconductivity. 1997: 709-724.
    [9]
    Nishiwaki M, Akai K, Furuya T, et al. Developments of HOM dampers for SuperKEKB superconducting cavity[C]//Proceedings of SRF2013. 2014: 1058-1060.
    [10]
    Moffat D, Barnes P, Kirchgessner J, et al. Design and fabrication of a ferrite-lined HOM load for CESR-B[C]//Proceedings of International Conference on Particle Accelerators. 1993: 977-979.
    [11]
    Huang Tongming, Pan Weimin, Wang Guangwei, et al. The development of the 499.8 MHz superconducting cavity system for BEPCII[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1013: 165649. doi: 10.1016/j.nima.2021.165649
    [12]
    Valles N, Eichhorn R, Hoffstaetter G, et al. HOM studies of the Cornell ERL main linac cavity: HTC-1 through HTC-3[C]//Proceedings of IPAC2013. 2013: 2461-2463.
    [13]
    Nishiwaki M, Akai K, Furuya T, et al. Developments of SiC damper for superKEKB superconducting cavity[C]// Proceedings of SRF2015. 2015: 1289-1293.
    [14]
    Xu Wencan, Conway Z A, Daly E, et al. High-power test results for a cylindrical-shell silicon carbide higher-order-mode damper[J]. Physical Review Accelerators and Beams, 2024, 27: 031601. doi: 10.1103/PhysRevAccelBeams.27.031601
    [15]
    Hao Xuerui, Li Zhongquan, Ye Kuangkuang, et al. 500 MHz higher order mode damped cavity designed for 4th generation synchrotron radiation sources[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1040: 167273. doi: 10.1016/j.nima.2022.167273
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article views (508) PDF downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return