Volume 37 Issue 5
Mar.  2025
Turn off MathJax
Article Contents
Dong Ziqiang, Shao Zhuoxia, Zhang Tong, et al. Resonant injection method for compact X-ray light source[J]. High Power Laser and Particle Beams, 2025, 37: 054004. doi: 10.11884/HPLPB202537.240179
Citation: Dong Ziqiang, Shao Zhuoxia, Zhang Tong, et al. Resonant injection method for compact X-ray light source[J]. High Power Laser and Particle Beams, 2025, 37: 054004. doi: 10.11884/HPLPB202537.240179

Resonant injection method for compact X-ray light source

doi: 10.11884/HPLPB202537.240179
  • Received Date: 2024-08-27
  • Accepted Date: 2025-02-27
  • Rev Recd Date: 2025-02-27
  • Available Online: 2025-03-29
  • Publish Date: 2025-03-31
  • This study focuses on the critical challenge of the integrated storage ring injection system in a compact X-ray light source. Utilizing the 3D electromagnetic field simulation software CST and the beam dynamics simulation software ELEGANT, we conducted multi-parameter optimization design for the key component of the injection system—the perturbator. The phase space evolution behavior of the electron beam during half-integer resonance injection processes was systematically investigated, leading to optimized structural parameters of injection components. For the compact storage ring, the optimized injection scheme demonstrates that the perturbator achieves optimal performance when positioned within an angular range of 150°–210° relative to the injection point, with the electron beam injection offset by 30 mm from the equilibrium orbit. After the perturbator stops working, the injected electron oscillation amplitude is minimized to 3.4 mm. Furthermore, the feasibility of implementing a multi-turn multi-pass injection scheme in the compact storage ring was analyzed. Numerical results indicate that maximum injection efficiency can be obtained when the kicker operates at a frequency of 3 MHz. These findings provide critical insights for enhancing beam stability and operational efficiency in compact synchrotron radiation facilities.
  • loading
  • [1]
    杨福家, 王炎森, 陆福全. 原子核物理[M]. 2版. 上海: 复旦大学出版社, 2002

    Yang Fujia, Wang Yansen, Lu Fuquan. Nuclear physics[M]. 2nd ed. Shanghai: Fudan University Press, 2002
    [2]
    刘祖平. 同步辐射光源物理引论[M]. 合肥: 中国科学技术大学出版社, 2009

    Liu Zuping. Introduction to the physics of synchrotron radiation source[M]. Hefei: University of Science and Technology of China Press, 2009
    [3]
    何多慧. 合肥国家同步辐射光源[J]. 物理, 1992, 21(5):257-262

    He Duohui. Hefei national synchrotron radiation source[J]. Physics, 1992, 21(5): 257-262
    [4]
    李浩虎, 余笑寒, 何建华. 上海光源介绍[J]. 现代物理知识, 2010, 22(3):14-19

    Li Haohu, Yu Xiaohan, He Jianhua. Introduction to Shanghai Synchrotron Radiation Facility[J]. Modern Physics, 2010, 22(3): 14-19
    [5]
    北京正负电子对撞机国家实验室办公室. 北京同步辐射装置简介[J]. 核技术, 2002, 25(10):769 doi: 10.3321/j.issn:0253-3219.2002.10.001

    Office of Beijing Electron Positron Collider National Laboratory. Introduction on Beijing Synchrotron Radiation Facility[J]. Nuclear Techniques, 2002, 25(10): 769 doi: 10.3321/j.issn:0253-3219.2002.10.001
    [6]
    Yamada H, Kitazawa Y, Kanai Y, et al. Development of the hard X-ray source based on a tabletop electron storage ring[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467/468: 122-125.
    [7]
    Yamada H. The smallest electron storage ring for high-intensity far-infrared and hard X-ray productions[J]. Journal of Synchrotron Radiation, 1998, 5(6): 1326-1331.
    [8]
    Hasegawa D, Yamada H, Kleev A I, et al. The portable synchrotron MIRRORCLE-6X[J]. AIP Conference Proceedings, 2004, 716(1): 116-119.
    [9]
    Yamada H. Novel X-ray source based on a tabletop synchrotron and its unique features[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2003, 199: 509-516. doi: 10.1016/S0168-583X(02)01593-8
    [10]
    Yamada H. MIRRORCLE-type tabletop/portable SR sources for advanced applications[J]. AIP Conference Proceedings, 2007, 902(1): 11-18.
    [11]
    Gambaccini M, Marziani M, Taibi A, et al. Characterization of a novel X-ray source: the MIRRORCLE-6X system[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 664(1): 78-83.
    [12]
    Ogata T, Teshima T, Matsumoto M, et al. The biological effects on cancer cells by synchrotron radiation generated from MIRRORCLE-6X[J]. AIP Conference Proceedings, 2004, 716(1): 73-77.
    [13]
    陈佳洱. 加速器物理基础[M]. 北京: 北京大学出版社, 2012

    Chen Jiaer. Fundamentals of accelerator physics[M]. Beijing: Peking University Press, 2012
    [14]
    Yamada H. Commissioning of aurora: the smallest synchrotron light source[J]. Journal of Vacuum Science & Technology B, 1990, 8(6): 1628-1632.
    [15]
    Yamada H, SHI Accelerator Research Group. Present status of compact synchrotron light source ''AURORA''[J]. Review of Scientific Instruments, 1989, 60(7): 1786-1788.
    [16]
    Takayama T. Resonance injection method for the compact superconducting SR-ring[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1987, 24/25: 420-424.
    [17]
    Hasegawa D, Yamada H, Kleev A I, et al. The tabletop synchrotron MIRRORCLE-6X[C]//Proceedings of the 14th Symposium on Accelerator Science and Technology. 2003: 111.
    [18]
    Weihreter E. Review of compact synchrotron light sources[C]//Proceedings of the 3rd European Particle Accelerator Conference. 1992: 93.
    [19]
    滕建, 曹磊峰, 范伟, 等. 微型轫致辐射X射线光源扰动器设计[J]. 强激光与粒子束, 2012, 24(5):1107-1110 doi: 10.3788/HPLPB20122405.1107

    Teng Jian, Cao Leifeng, Fan Wei, et al. Design of perturbator for mini bremsstrahlung X-ray source[J]. High Power Laser and Particle Beams, 2012, 24(5): 1107-1110 doi: 10.3788/HPLPB20122405.1107
    [20]
    戴建枰, 顾小冯. 微型轫致辐射光源磁铁和扰动器设计研究[J]. 高能物理与核物理, 2007, 31(3):316-319 doi: 10.3321/j.issn:0254-3052.2007.03.020

    Dai Jianping, Gu Xiaofeng. Magnet and perturbator design for a mini bremsstrahlung X-ray source[J]. High Energy Physics and Nuclear Physics, 2007, 31(3): 316-319 doi: 10.3321/j.issn:0254-3052.2007.03.020
    [21]
    Roggen T, Masschaele B, De Gersem H, et al. Modeling a table top storage ring for a compact light source using electromagnetic field simulation tools[C]//Proceedings of the f Linear Accelerator Conference LINAC2010. 2010: 953-955.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (61) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return