Turn off MathJax
Article Contents
Zhang Yong, Liu Zhen, Ruiyu Zhu, et al. Experimental study on Escherichia coli treatment by pulsed xenon lamp[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240229
Citation: Zhang Yong, Liu Zhen, Ruiyu Zhu, et al. Experimental study on Escherichia coli treatment by pulsed xenon lamp[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240229

Experimental study on Escherichia coli treatment by pulsed xenon lamp

doi: 10.11884/HPLPB202537.240229
  • Received Date: 2024-07-12
  • Accepted Date: 2025-01-16
  • Rev Recd Date: 2025-03-04
  • Available Online: 2025-04-07
  • To optimize the performance of the pulsed xenon lamp sterilization device, the influence of spectral range and specifications of lamps on the sterilization effect is studied based on a self-developed high-energy microsecond pulse power supply and xenon lamps with different specifications. The results show that in the UV-visible spectrum of a xenon lamp with an arc length of 50 mm and a pressure of 50 kPa, the UV accounts for 38.5% and the UVC accounts for 17.6%. Increasing the arc length and decreasing the pressure can both increase the spectral intensity, and the latter can also increase the ratio of UV. The xenon lamp with an arc length of 100 mm and a pressure of 50 kPa can basically inactivate all Escherichia coli in 3 seconds with a discharge energy of 20 J. The sterilization rate is positively correlated with arc length and discharge energy of the lamp, negatively correlated with pressure. The all bands of xenon lamp radiation have sterilization effects, with UV accounting for 87.7% and the wavelength band less than 280 nm accounting for 64.6%. The AFM images show that pulsed xenon lamp changed the morphology and mechanical properties of Escherichia coli, hence the bacteria shrank, their surface roughness, elasticity, and adhesion increased.
  • loading
  • [1]
    郑超. 低温等离子体和脉冲电场灭菌技术[D]. 杭州: 浙江大学, 2013

    Zheng Chao. Non-thermal plasma and pulsed electric field induced disinfection[D]. Hangzhou: Zhejiang University, 2013
    [2]
    Júnior L M, Cristianini M, Anjos C A R. Packaging aspects for processing and quality of foods treated by pulsed light[J]. Journal of Food Processing and Preservation, 2020, 44: e14902.
    [3]
    廖云辉. 脉冲氙灯空气杀菌效果的实验研究[D]. 天津: 天津大学, 2018

    Liao Yunhui. Experimental study on the air disinfection by pulsed xenon lamp[D]. Tianjin: Tianjin University, 2018
    [4]
    Uslu G, Demirci A, Regan J M. Disinfection of synthetic and real municipal wastewater effluent by flow-through pulsed UV-light treatment system[J]. Journal of Water Process Engineering, 2016, 10: 89-97.
    [5]
    Hwang H J, Park J Y, Chung M S, et al. Microbial inactivation in fresh and minimally processed foods by intense pulsed light (IPL) treatment[J]. Food Science and Biotechnology, 2021, 30(7): 939-948. doi: 10.1007/s10068-021-00937-5
    [6]
    Tao Tingting, Ding Chao, Han Nengneng, et al. Evaluation of pulsed light for inactivation of foodborne pathogens on fresh-cut lettuce: effects on quality attributes during storage[J]. Food Packaging and Shelf Life, 2019, 21: 100358.
    [7]
    Zhang Baiqing, Sun Bingxin, Ma Fengming, et al. The design and theoretical analysis of major components of pulse light sterilization equipment[J]. Procedia Engineering, 2012, 37: 260-267. doi: 10.1016/j.proeng.2012.04.237
    [8]
    Garvey M, Rowan N J. Pulsed UV as a potential surface sanitizer in food production processes to ensure consumer safety[J]. Current Opinion in Food Science, 2019, 26: 65-70.
    [9]
    Ferrario M, Guerrero S, Alzamora S M. Study of pulsed light-induced damage on Saccharomyces cerevisiae in apple juice by flow cytometry and transmission electron microscopy[J]. Food and Bioprocess Technology, 2014, 7(4): 1001-1011. doi: 10.1007/s11947-013-1121-9
    [10]
    Artíguez M L, de Marañón I M. Inactivation of spores and vegetative cells of Bacillus subtilis and Geobacillus stearothermophilus by pulsed light[J]. Innovative Food Science & Emerging Technologies, 2015, 28: 52-58.
    [11]
    Huang Yaoxin, Ye Mu, Cao Xinang, et al. Pulsed light inactivation of murine norovirus, Tulane virus, Escherichia coli O157: H7 and Salmonella in suspension and on berry surfaces[J]. Food Microbiology, 2017, 61: 1-4. doi: 10.1016/j.fm.2016.08.001
    [12]
    Jang H, Nguyen M C, Noh S, et al. UV laser sterilization of Bacillus atrophaeus spores on ceramic tiles[J]. Ceramics International, 2022, 48(1): 1446-1450.
    [13]
    Pellicer J A, Navarro P, Gómez-López V M. Pulsed light inactivation of polygalacturonase[J]. Food Chemistry, 2019, 271: 109-113. doi: 10.1016/j.foodchem.2018.07.194
    [14]
    Jabeen A, Rayees B, Masoodi F A. Pulsed light technology: a novel method for food preservation[J]. International Food Research Journal, 2014, 21(3): 839-848.
    [15]
    Hilton S T, de Moraes J O, Moraru C I. Effect of sublethal temperatures on pulsed light inactivation of bacteria[J]. Innovative Food Science & Emerging Technologies, 2017, 39: 49-54.
    [16]
    Faghihzadeh F, Anaya N M, Hadjeres H, et al. Pulse UV light effect on microbial biomolecules and organic pollutants degradation in aqueous solutions[J]. Chemosphere, 2019, 216: 677-683. doi: 10.1016/j.chemosphere.2018.10.176
    [17]
    Xie Shuge, Shen Diya, Yuan Qing, et al. Effects of electrical pulse width and output irradiance on intense pulse light inactivation[J]. Bioengineering, 2022, 9(12): 730. doi: 10.3390/bioengineering9120730
    [18]
    Cassar J R, Mills E W, Demirci A. Characterization of pulsed light for microbial inactivation[J]. Journal of Food Engineering, 2022, 334: 111152. doi: 10.1016/j.jfoodeng.2022.111152
    [19]
    王纯冰, 孔庆财, 徐伟, 等. 脉冲强光对流动水中大肠杆菌的杀灭效果研究[J]. 食品科技, 2011, 36(4):36-40,44

    Wang Chunbing, Kong Qingcai, Xu Wei, et al. Inactivation of E. coli in water using flow-through pulsed light treatment system[J]. Food Science and Technology, 2011, 36(4): 36-40,44
    [20]
    Paskeviciute E, Buchovec I, Luksiene Z. High-power pulsed light for decontamination of chicken from food pathogens: a study on antimicrobial efficiency and organoleptic properties[J]. Journal of Food Safety, 2011, 31(1): 61-68. doi: 10.1111/j.1745-4565.2010.00267.x
    [21]
    杨浩, 宋涛, 赵慧平, 等. 大肠杆菌在原子力显微镜下的观测及其形貌[J]. 武汉工程大学学报, 2012, 34(12):8-12 doi: 10.3969/j.issn.1674-2869.2012.12.003

    Yang Hao, Song Tao, Zhao Huiping, et al. Imaging and morphology of Escherichia coli using atomic force microscopy[J]. Journal of Wuhan Institute of Technology, 2012, 34(12): 8-12 doi: 10.3969/j.issn.1674-2869.2012.12.003
    [22]
    马梦佳, 陈玉云, 闫志强, 等. 原子力显微镜在纳米生物材料研究中的应用[J]. 化学进展, 2013, 25(1):135-144 doi: 10.7536/PC120714

    Ma Mengjia, Chen Yuyun, Yan Zhiqiang, et al. Applications of atomic force microscopy in nanobiomaterials research[J]. Progress in Chemistry, 2013, 25(1): 135-144 doi: 10.7536/PC120714
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article views (43) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return