Volume 37 Issue 3
Feb.  2025
Turn off MathJax
Article Contents
Ye Shaohua, Yang Yong, Rao Bo, et al. Parameter design method of magnetic compression power supply based on genetic algorithm[J]. High Power Laser and Particle Beams, 2025, 37: 035012. doi: 10.11884/HPLPB202537.240259
Citation: Ye Shaohua, Yang Yong, Rao Bo, et al. Parameter design method of magnetic compression power supply based on genetic algorithm[J]. High Power Laser and Particle Beams, 2025, 37: 035012. doi: 10.11884/HPLPB202537.240259

Parameter design method of magnetic compression power supply based on genetic algorithm

doi: 10.11884/HPLPB202537.240259
  • Received Date: 2024-08-12
  • Accepted Date: 2025-02-10
  • Rev Recd Date: 2025-02-10
  • Available Online: 2025-03-01
  • Publish Date: 2025-03-15
  • The magnetic compression power supply, which is an important part of the magnetic compression system, is mainly used to supply power to the compressed magnet to form the magnetic field shape required for the field reversed configuration (FRC) plasma compression. The large number of compressed magnet coils and the complex coupling relationship between the coils make it difficult to solve the power supply parameters required to form the target magnetic field. A method is proposed for designing the parameters of the magnetic compression power supply based on genetic algorithm with high efficiency. According to the topology of the magnetic compression power supply and the coupling relationship between the coils, the physical model of the power supply system is derived. On the basis of the physical model, the design method of compressed power supply parameters based on genetic algorithm is proposed, and the basic principle of the method is clarified. The algorithm code and the MATLAB simulation model are established. Under the ideal situation and practical engineering design conditions, the power supply parameters of the HFRC magnetic compression system were optimized, the results of the optimized magnetic field are basically consistent with the target magnetic field shape. Meanwhile, a MAXWELL simulation model is established for comparative analysis, the results of these two modes fits well, which verifies the effectiveness and accuracy of the method in power supply design.
  • loading
  • [1]
    Tuszewski M. Field reversed configurations[J]. Nuclear Fusion, 1988, 28(11): 2033-2092. doi: 10.1088/0029-5515/28/11/008
    [2]
    Yoshimura S, Sugimoto S, Okada S. Computed multiple tomography for translated field reversed configuration plasma[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 2510-2511. doi: 10.1109/TPS.2014.2321399
    [3]
    Zhang Shouyin, Intrator T P, Wurden G A, et al. Confinement analyses of the high-density field-reversed configuration plasma in the field-reversed configuration experiment with a liner[J]. Physics of Plasmas, 2005, 12: 052513. doi: 10.1063/1.1899648
    [4]
    Taccetti J M, Intrator T P, Wurden G A, et al. FRX-L: a field-reversed configuration plasma injector for magnetized target fusion[J]. Review of Scientific Instruments, 2003, 74(10): 4314-4323. doi: 10.1063/1.1606534
    [5]
    Intrator T P, Siemon R E, Sieck P E. Adiabatic model and design of a translating field reversed configuration[J]. Physics of Plasmas, 2008, 15: 042505. doi: 10.1063/1.2907165
    [6]
    Laberge M, Howard S, Richardson D, et al. Acoustically driven Magnetized Target Fusion[C]//2013 IEEE 25th Symposium on Fusion Engineering (SOFE). 2013: 1-7.
    [7]
    Freidberg J P. Plasma physics and fusion energy[M]. Cambridge: Cambridge University Press, 2007: 344-350.
    [8]
    Steinhauer L C. Review of field-reversed configurations[J]. Physics of Plasmas, 2011, 18: 070501. doi: 10.1063/1.3613680
    [9]
    Kirtley D, Milroy R. Fundamental scaling of adiabatic compression of field reversed configuration thermonuclear fusion plasmas[J]. Journal of Fusion Energy, 2023, 42: 30. doi: 10.1007/s10894-023-00367-7
    [10]
    Sun Qizhi, Yang Xianjun, Jia Yuesong, et al. Formation of Field Reversed Configuration (FRC) on the Yingguang-I device[J]. Matter and Radiation at Extremes, 2017, 2(5): 263-274. doi: 10.1016/j.mre.2017.07.003
    [11]
    Francis Thio Y C, Knapp C E, Kirkpatrick R C, et al. A physics exploratory experiment on plasma liner formation[J]. Journal of Fusion Energy, 2001, 20(1/2): 1-11. doi: 10.1023/A:1019813528507
    [12]
    Okada S, Kitano K, Goto S. Axial magnetic compression of FRC plasma[J]. IEEJ Transactions on Fundamentals and Materials, 1999, 119(11): 1324-1329. doi: 10.1541/ieejfms1990.119.11_1324
    [13]
    Rej D J, Taggart D P, Baron M H, et al. High-power magnetic-compression heating of field-reversed configurations[J]. Physics of Fluids B: Plasmas Physics, 1992, 4(7): 1909-1919. doi: 10.1063/1.860043
    [14]
    Kitano K, Matsumoto H, Yamanaka K, et al. Advanced experiments on field-reversed configuration at Osaka[C]//Proceedings of the 1988 International Congress on Plasma Physics Combined Eith the 25th EPS Conference on Controlled Fusion and Plasma Physics, 1998.
    [15]
    Rej D J, Waganaar W J. Performance of the 10-kV, 5-MA pulsed-power system for the FRX-C compression experiment[C]//Eighth IEEE International Conference on Pulsed Power. 1991: 217-220.
    [16]
    Grabowski C, Gale D, Parker J, et al. Design of FRC formation and liner compression experiment (F-LINCX) at AFRL[C]//2005 IEEE Pulsed Power Conference. 2005: 304-307.
    [17]
    Jorling J, Hofmann J, Weise T H G G, et al. 49 MJ pulsed power facility to produce high magnetic fields[C]//2007 16th IEEE International Pulsed Power Conference. 2007: 1513-1516.
    [18]
    Debray F, Frings P. State of the art and developments of high field magnets at the “Laboratoire National des Champs Magnétiques Intenses”[J]. Comptes Rendus Physique, 2013, 14(1): 2-14. doi: 10.1016/j.crhy.2012.11.002
    [19]
    Ding H F, Jiang C X, Ding T H, et al. Prototype test and manufacture of a modular 12.5 MJ capacitive pulsed power supply[J]. IEEE Transactions on Applied Superconductivity, 2010, 20(3): 1676-1680. doi: 10.1109/TASC.2009.2039785
    [20]
    李传. ITER极向场变流器高功率大电流电抗器的设计与研制[D]. 武汉: 华中科技大学, 2016: 40-43

    Li Chuan. Research and design on high-power large-current reactor applied to ITER poloidal field converter power supply[D]. Wuhan: Huazhong University of Science & Technology, 2016: 40-43
    [21]
    张之翔. 电磁学中几个简单问题里的椭圆积分[J]. 大学物理, 2002, 21(4):22-24 doi: 10.3969/j.issn.1000-0712.2002.04.007

    Zhang Zhixiang. Elliptical integrals in the expression of results of some simple problems in electromagnetics[J]. College Physics, 2002, 21(4): 22-24 doi: 10.3969/j.issn.1000-0712.2002.04.007
    [22]
    De Jong K A. An analysis of the behavior of a class of genetic adaptive systems[D]. Ann Arbor: University of Michigan, 1975: 1-47.
    [23]
    胡妙娟, 胡春, 钱锋. 遗传算法中选择策略的分析[J]. 计算机与数字工程, 2006, 34(3):1-3,57 doi: 10.3969/j.issn.1672-9722.2006.03.001

    Hu Miaojuan, Hu Chun, Qian Feng. General analysis of selection strategy in genetic algorithm[J]. Computer & Digital Engineering, 2006, 34(3): 1-3,57 doi: 10.3969/j.issn.1672-9722.2006.03.001
    [24]
    Zhang Qinglong, Rao Bo, Yang Yong, et al. Analysis and design of in-vessel magnetic compression coil system for HFRC[J]. Fusion Engineering and Design, 2023, 194: 113751. doi: 10.1016/j.fusengdes.2023.113751
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article views (391) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return