Citation: | Li Jinbo, Xu Jie, Mu Baozhong, et al. Simulation research on high resolution X-ray diagnosis technology based on diffraction imaging[J]. High Power Laser and Particle Beams, 2025, 37: 052004. doi: 10.11884/HPLPB202537.240269 |
[1] |
Do A, Pickworth L A, Kozioziemski B J, et al. Fresnel zone plate development for X-ray radiography of hydrodynamic instabilities at the National Ignition Facility[J]. Applied Optics, 2020, 59(34): 10777-10785. doi: 10.1364/AO.408569
|
[2] |
Do A, Kozioziemski B J. Fresnel zone plate point spread function approximation for zeroth order mitigation in millimetric field of view X-ray imaging[J]. Review of Scientific Instruments, 2022, 93: 103507. doi: 10.1063/5.0101691
|
[3] |
Do A, Angulo A M, Hall G N, et al. X-ray imaging of Rayleigh–Taylor instabilities using Fresnel zone plate at the National Ignition Facility[J]. Review of Scientific Instruments, 2021, 92: 053511. doi: 10.1063/5.0043682
|
[4] |
陈志峰. 梁铨廷教授著《物理光学》及其配套教材评介[J]. 求知导刊, 2017(6):155
Chen Zhifeng. Liang Quanting, Physical Optics[J]. Guide to Knowledge, 2017(6): 155
|
[5] |
Born M, Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light[M]. 7th ed. Cambridge: Cambridge University Press, 2013.
|
[6] |
徐向东, 洪义麟, 付绍军, 等. X射线波带片的制作及其应用[J]. 光学技术, 1999(2):22-25 doi: 10.3321/j.issn:1002-1582.1999.02.002
Xu Xiangdong, Hong Yilin, Fu Shaojun, et al. X ray zone plates fabrication and its application[J]. Optical Technology, 1999(2): 22-25 doi: 10.3321/j.issn:1002-1582.1999.02.002
|
[7] |
Suzuki Y, Takeuchi A, Takano H, et al. Performance test of Fresnel zone plate with 50 nm outermost zone width in hard X-ray region[J]. Japanese Journal of Applied Physics, 2005, 44: 1994. doi: 10.1143/JJAP.44.1994
|
[8] |
Takeuchi A, Uesugi K, Uesugi M, et al. High-energy X-ray nanotomography introducing an apodization Fresnel zone plate objective lens[J]. Review of Scientific Instruments, 2021, 92: 023701. doi: 10.1063/5.0020293
|
[9] |
Chao W L, Kim J, Rekawa S, et al. Demonstration of 12 nm resolution Fresnel zone plate lens based soft X-ray microscopy[J]. Optics Express, 2009, 17(20): 17669-17677. doi: 10.1364/OE.17.017669
|
[10] |
Chu Y S, Yi J M, De Carlo F, et al. Hard-X-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution[J]. Applied Physics Letters, 2008, 92: 103119. doi: 10.1063/1.2857476
|
[11] |
Attwood D. Soft X-rays and extreme ultraviolet radiation: principles and applications[M]. Cambridge: Cambridge University Press, 1999.
|
[12] |
Do A, Briat M, Baton S D, et al. Two-channel high-resolution quasi-monochromatic X-ray imager for Al and Ti plasma[J]. Review of Scientific Instruments, 2018, 89: 113702. doi: 10.1063/1.5042069
|
[13] |
Do A, Troussel P, Baton S D, et al. High-resolution quasi-monochromatic X-ray imaging using a Fresnel phase zone plate and a multilayer mirror[J]. Review of Scientific Instruments, 2017, 88: 013701. doi: 10.1063/1.4973296
|
[14] |
Guilbaud O, Edwards M, Klisnick A, et al. Near-field imaging of Ni-like silver transient collisional X-ray laser[C]//Soft X-Ray Lasers and Applications V. 2003: 17-28.
|
[15] |
Rus B, Mocek T, Präg A R, et al. Multi-millijoule, deeply saturated X-ray laser at 21.2 nm for applications in plasma physics[J]. Plasma Physics and Controlled Fusion, 2002, 44: B207. doi: 10.1088/0741-3335/44/12B/315
|