Citation: | Zeng Tongke, Dai Jianping. Application of machine learning in BEPCII superconduction radio-frequency cavity fault analysis[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240270 |
[1] |
王光伟, 沙鹏, 潘卫民, 等. BEPCII高频系统的建造[J]. 中国物理C, 2008(s1):169-171
Wang Guangwei, Sha Peng, Pan Weimin, et al. Construction of the BEPCII RF system[J]. Chinese Physics C, 2008(s1): 169-171
|
[2] |
Solopova A, Carpenter A, Powers T, et al. SRF cavity fault classification using machine learning at CEBAF[R]. Newport News: Thomas Jefferson National Accelerator Facility (TJNAF), 2019.
|
[3] |
Tennant C, Carpenter A, Powers T, et al. Superconducting radio-frequency cavity fault classification using machine learning at Jefferson Laboratory[J]. Physical Review Accelerators and Beams, 2020, 23: 114601. doi: 10.1103/PhysRevAccelBeams.23.114601
|
[4] |
Vidyaratne L, Carpenter A, Powers T, et al. Deep learning based superconducting radio-frequency cavity fault classification at Jefferson laboratory[J]. Frontiers in Artificial Intelligence, 2022, 4: 718950. doi: 10.3389/frai.2021.718950
|
[5] |
Rahman M M, Iftekharuddin K, Carptenter A, et al. Real-time cavity fault prediction in CEBAF using deep learning[C]//Proceedings of the North American Particle Accelerator Conference. 2022: 687-690.
|
[6] |
肖麟阁, 戴建枰, 王群要, 等. BEPCII超导腔失效分析[J]. 强激光与粒子束, 2019, 31:085105 doi: 10.11884/HPLPB201931.190078
Xiao Linge, Dai Jianping, Wang Qunyao, et al. Analysis of the failure of BEPCII SRF cavities[J]. High Power Laser and Particle Beams, 2019, 31: 085105 doi: 10.11884/HPLPB201931.190078
|
[7] |
韩晓微. 彩色图像处理关键技术研究[D]. 沈阳: 东北大学, 2005
Han Xiaowei. Study on key technologies of color image processing[D]. Shenyang: Northeastern University, 2005
|
[8] |
戴聪聪, 罗小燕, 邵凡, 等. 基于CEEMDAN和AR模型的岩体声发射信号特征提取方法研究[J]. 化工矿物与加工, 2018, 47(6):20-24
Dai Congcong, Luo Xiaoyan, Shao Fan, et al. Study on extraction method of rock acoustic emission signals based on CEEMDAN and AR model[J]. Industrial Minerals & Processing, 2018, 47(6): 20-24
|
[9] |
Das K, Behera R N. A survey on machine learning: concept, algorithms and applications[J]. International Journal of Innovative Research in Computer and Communication Engineering, 2017, 5(2): 1301-1309.
|
[10] |
李小斌, 李世银. AdBagging: 自适应抽样参数在线装袋算法[J]. 计算机工程与设计, 2011, 32(12):4095-4099
Li Xiaobin, Li Shiyin. AdBagging: adaptive sampling parameters online bagging algorithm[J]. Computer Engineering and Design, 2011, 32(12): 4095-4099
|
[11] |
孔英会, 车辚辚, 苑津莎, 等. 基于小波分解和数据挖掘中决策树算法的电能质量扰动识别方法[J]. 电网技术, 2007, 31(23):78-82
Kong Yinghui, Che Linlin, Yuan Jinsha, et al. A power quality disturbance identification method based on wavelet decomposition and decision tree algorithm in data mining[J]. Power System Technology, 2007, 31(23): 78-82
|
[12] |
孙吉贵, 刘杰, 赵连宇. 聚类算法研究[J]. 软件学报, 2008, 19(1):48-61
Sun Jigui, Liu Jie, Zhao Lianyu. Clustering algorithms research[J]. High Power Laser and Particle Beams, 2008, 19(1): 48-61
|
[13] |
张宁, 贾自艳, 史忠植. 使用KNN算法的文本分类[J]. 计算机工程, 2005, 31(8):171-172,185
Zhang Ning, Jia Ziyan, Shi Zhongzhi. Text categorization with KNN algorithm[J]. Computer Engineering, 2005, 31(8): 171-172,185
|
[14] |
James G, Witten D, Hastie T, et al. An introduction to statistical learning[M]. New York: Springer, 2013: 180-182.
|
[15] |
Foody G M. Status of land cover classification accuracy assessment[J]. Remote Sensing of Environment, 2002, 80(1): 185-201. doi: 10.1016/S0034-4257(01)00295-4
|
[16] |
Veropoulos K, Campbell I C G, Cristianini N. Controlling the sensitivity of support vector machines[C]//Proceedings of the International Joint Conference on AI. 1999: 55-60.
|