Turn off MathJax
Article Contents
Huo Yankun, Liu Wenyuan, He Yajiao, et al. Dual suppression on the vacuum surface flashover from composite surface modification[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240280
Citation: Huo Yankun, Liu Wenyuan, He Yajiao, et al. Dual suppression on the vacuum surface flashover from composite surface modification[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240280

Dual suppression on the vacuum surface flashover from composite surface modification

doi: 10.11884/HPLPB202537.240280
  • Received Date: 2024-08-26
  • Accepted Date: 2025-01-13
  • Rev Recd Date: 2025-03-19
  • Available Online: 2025-04-07
  • To improve the vacuum surface flashover of insulators, in this paper, a kind of composite surface structure consisting of micro grooves and molecule self-assembly membrane was proposed and prepared on the surface of alumina vacuum insulators by laser carving, water cleaning and molecule self-assembly. Meanwhile, insulators with only micro grooves or pure molecule membrane were also prepared. Secondary electron emission yield test shows that both the micro groove construction and molecule self-assembly can decrease the secondary electron emission yield of the alumina insulator. Their combination the composite surface structure can further decrease the secondary electron emission yield. Correspondingly, surface flashover voltage test indicated that surface micro groove construction and molecule self-assembly could both improve the surface flashover voltages and their combination could further improve the flashover voltages. The results demonstrate that molecule membrane and the micro grooves in the composite structure can form dual suppression to the development of the vacuum flashover.
  • loading
  • [1]
    Sun Guangyu, Song Baipeng, Zhang Guanjun, et al. Investigation of multipactor-induced surface plasma discharge and temporal mode transition[J]. Applied Physics Letters, 2018, 113: 011603. doi: 10.1063/1.5041874
    [2]
    Gleizer J Z, Krasik Y E, Dai U, et al. Vacuum surface flashover: experiments and simulations[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(5): 2394-2404. doi: 10.1109/TDEI.2014.004628
    [3]
    Sterling R C, Hughes M D, Mellor C J, et al. Increased surface flashover voltage in microfabricated devices[J]. Applied Physics Letters, 2013, 103: 143504.
    [4]
    Leopold J G, Leibovitz C, Navon I, et al. Different approach to pulsed high-voltage vacuum-insulation design[J]. Physical Review Accelerators and Beams, 2007, 10: 060401. doi: 10.1103/PhysRevSTAB.10.060401
    [5]
    Stygar W A, Lott J A, Wagoner T C, et al. Improved design of a high-voltage vacuum-insulator interface[J]. Physical Review Accelerators and Beams, 2005, 8: 050401.
    [6]
    Zhang Guanjun, Su Guoqiang, Song Baipeng, et al. Pulsed flashover across a solid dielectric in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(6): 2321-2339. doi: 10.1109/TDEI.2018.007133
    [7]
    Harris J R. A tutorial on vacuum surface flashover[J]. IEEE Transactions on Plasma Science, 2018, 46(6): 1872-1880. doi: 10.1109/TPS.2017.2759248
    [8]
    Wang Chao, Li Wendong, Guo Jia, et al. Unraveling the role of surface molecular structure on vacuum flashover for fluorinated copolymers[J]. Applied Surface Science, 2020, 505: 144432. doi: 10.1016/j.apsusc.2019.144432
    [9]
    Zhou Rundong, Sun Guangyu, Song Baipeng, et al. Mechanism of F2/N2 fluorination mitigating vacuum flashover of polymers[J]. Journal of Physics D: Applied Physics, 2019, 52: 375304.
    [10]
    Guo Baohong, Sun Guangyu, Zhang Shu, et al. Mechanism of vacuum flashover on surface roughness[J]. Journal of Physics D: Applied Physics, 2019, 52: 215301. doi: 10.1088/1361-6463/ab05a0
    [11]
    Miller H C. Flashover of insulators in vacuum: the last twenty years[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(6): 3641-3657.
    [12]
    Gleizer J Z, Krasik Y E, Leopold J. Time- and space-resolved light emission and spectroscopic research of the flashover plasma[J]. Journal of Applied Physics, 2015, 117: 073301. doi: 10.1063/1.4913213
    [13]
    Lauer E J, Lauer C J. Electron avalanche on a dielectric-vacuum interface[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(2): 1295-1299. doi: 10.1109/TDEI.2017.005837
    [14]
    Sun Guangyu, Song Baipeng, Guo Baohong, et al. Estimation of surface flashover threshold in vacuum: from multipactor to discharge plasma[J]. Journal of Physics D: Applied Physics, 2018, 51: 295201. doi: 10.1088/1361-6463/aacccf
    [15]
    张贝, 刘文元, 霍艳坤, 等. 大气等离子体表面改性对PEI绝缘子真空沿面耐压性能的影响[J]. 现代应用物理, 2021, 12:040404

    Zhang Bei, Liu Wenyuan, Huo Yankun, et al. Effect of atmospheric plasma treatment on vacuum surface voltage-withstand performance of PEI insulators[J]. Modern Applied Physics, 2021, 12: 040404
    [16]
    Zhang Penghao, Zhang Shuai, Kong Fei, et al. Atmospheric-pressure plasma jet deposition of bumpy coating improves polypropylene surface flashover performance in vacuum[J]. Surface and Coatings Technology, 2020, 387: 125511. doi: 10.1016/j.surfcoat.2020.125511
    [17]
    Huang Yin, Min Daomin, Li Shengtao, et al. Surface flashover performance of epoxy resin microcomposites improved by electron beam irradiation[J]. Applied Surface Science, 2017, 406: 39-45. doi: 10.1016/j.apsusc.2017.02.093
    [18]
    Huo Yankun, Liu Wenyuan, Ke Changfeng, et al. Sharp improvement of flashover strength from composite micro-textured surfaces[J]. Journal of Applied Physics, 2017, 122: 115105. doi: 10.1063/1.4991934
    [19]
    Kong Fei, Chang Chao, Ma Yiyang, et al. Surface modifications of polystyrene and their stability: a comparison of DBD plasma deposition and direct fluorination[J]. Applied Surface Science, 2018, 459: 300-308. doi: 10.1016/j.apsusc.2018.07.211
    [20]
    Chen Sile, Wang Shuai, Wang Yibo, et al. Surface modification of epoxy resin using He/CF4 atmospheric pressure plasma jet for flashover withstanding characteristics improvement in vacuum[J]. Applied Surface Science, 2017, 414: 107-113. doi: 10.1016/j.apsusc.2017.03.278
    [21]
    Shao Tao, Yang Wenjin, Zhang Cheng, et al. Enhanced surface flashover strength in vacuum of polymethylmethacrylate by surface modification using atmospheric-pressure dielectric barrier discharge[J]. Applied Physics Letters, 2014, 105: 071607. doi: 10.1063/1.4893884
    [22]
    Kelkar S S, Chiavetta D, Wolden C A. Formation of octadecyltrichlorosilane (OTS) self-assembled monolayers on amorphous alumina[J]. Applied Surface Science, 2013, 282: 291-296. doi: 10.1016/j.apsusc.2013.05.121
    [23]
    Liu Wenyuan, Guo Yuewen, Huo Yankun, et al. Construction of microgrooves on the surface of alumina ceramic insulator to enhance its flashover strength[J]. AIP Advances, 2020, 10: 045009. doi: 10.1063/5.0003592
    [24]
    Huo Yankun, Liu Wenyuan, Guo Yuewen, et al. Molecule self-assembly on alumina ceramic insulator to enhance its vacuum surface voltage withstand strength[J]. Journal of Applied Physics, 2020, 127: 243304. doi: 10.1063/5.0006233
    [25]
    霍艳坤, 刘文元, 何亚姣, 等. 聚合物真空绝缘子表面二级微结构[J]. 强激光与粒子束, 2024, 36:055017 doi: 10.11884/HPLPB202436.230423

    Huo Yankun, Liu Wenyuan, He Yajiao, et al. Two-stage microstructure on surface of vacuum polymer insulators[J]. High Power Laser and Particle Beams, 2024, 36: 055017 doi: 10.11884/HPLPB202436.230423
    [26]
    Cai Libing, Wang Jianguo, Ceng Guoxin, et al. Simulation of multipactor on the rectangular grooved dielectric surface[J]. Physics of Plasmas, 2015, 22: 113506. doi: 10.1063/1.4935385
    [27]
    Chang Chao, Huang H J, Liu G Z, et al. The effect of grooved surface on dielectric multipactor[J]. Journal of Applied Physics, 2009, 105: 123305. doi: 10.1063/1.3153947
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views (47) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return