Citation: | Hua Yan, Li Xiaoling, Han Yujing, et al. Numerical simulation and measurement of two-dimensional thermal diffusion length under continuous heat loading[J]. High Power Laser and Particle Beams, 2025, 37: 051002. doi: 10.11884/HPLPB202537.240314 |
[1] |
Wan Hui, Cao Hao, Luan Shiyi, et al. Investigation of thermal damage in continuous wave laser-induced nanowelding[J]. Optics & Laser Technology, 2023, 161: 109143.
|
[2] |
Boué C, Holé S. Infrared thermography protocol for simple measurements of thermal diffusivity and conductivity[J]. Infrared Physics & Technology, 2012, 55(4): 376-379.
|
[3] |
Shen Pengfei, Zhuang Yangpeng, Jiang Shengda, et al. Experimental and numerical investigation on the ablation mechanism of Al2O3/Al2O3-CMCs under continuous-wave laser irradiation[J]. Journal of the European Ceramic Society, 2022, 42(5): 2307-2318. doi: 10.1016/j.jeurceramsoc.2022.01.005
|
[4] |
Sakai T, Okamoto Y, Taura N, et al. Effect of scanning speed on molten metal behaviour under angled irradiation with a continuous-wave laser[J]. Journal of Materials Processing Technology, 2023, 313: 117866. doi: 10.1016/j.jmatprotec.2023.117866
|
[5] |
Chen Zhao, Weng Yudong, Liu Junku, et al. Dual-band perfect absorber for a mid-infrared photodetector based on a dielectric metal metasurface[J]. Photonics Research, 2021, 9(1): 27-33. doi: 10.1364/PRJ.410554
|
[6] |
Chen Yan, Chen Kejian, Zhang Dajun, et al. Ultrabroadband microwave absorber based on 3D water microchannels[J]. Photonics Research, 2021, 9(7): 1391-1396. doi: 10.1364/PRJ.422686
|
[7] |
Wu C T, Yao M X, Dai T Y, et al. Thermal effect and laser characteristics of LD end-pumped CW Tm: YAG laser at room temperature[J]. Optik, 2017, 140: 356-362. doi: 10.1016/j.ijleo.2017.04.058
|
[8] |
Chen Guibo, Bi Juan. Semi-analytical simulation for temperature of material irradiated by CW laser considering the effect of atmospheric thermal blooming[J]. Optik, 2017, 130: 489-498. doi: 10.1016/j.ijleo.2016.10.071
|
[9] |
Lee K H, Shin W S, Kang E C. Analysis of optical damage in germanium induced by a continuous wave laser[J]. Applied Optics, 2013, 52(10): 2055-2061. doi: 10.1364/AO.52.002055
|
[10] |
Matthias E, Reichling M, Siegel J, et al. The influence of thermal diffusion on laser ablation of metal films[J]. Applied Physics A, 1994, 58(2): 129-136. doi: 10.1007/BF00332169
|
[11] |
Hofmeister A M. Dependence of heat transport in solids on length-scale, pressure, and temperature: implications for mechanisms and thermodynamics[J]. Materials, 2021, 14: 449. doi: 10.3390/ma14020449
|
[12] |
Li Yuxin, Yuan Hang, Dan Ziqiang, et al. Behavior analysis and threshold prediction of laser-induced damage in fused silica based on 2-D thermal diffusion model[J]. Ceramics International, 2024, 50(4): 7077-7085. doi: 10.1016/j.ceramint.2023.12.065
|
[13] |
Zhao Feiyun, Ren Aobo, Li Peihang, et al. Toward continuous-wave pumped metal halide perovskite lasers: strategies and challenges[J]. ACS Nano, 2022, 16(5): 7116-7143. doi: 10.1021/acsnano.1c11539
|
[14] |
Pierre T, Geslain É, Courtois M, et al. In-plane thermal diffusivity estimation by radial fin method[J]. Infrared Physics & Technology, 2022, 120: 103998.
|
[15] |
Fabbri L, Fenici P. Three-dimensional photothermal radiometry for the determination of the thermal diffusivity of solids[J]. Review of Scientific Instruments, 1995, 66(6): 3593-3600. doi: 10.1063/1.1146443
|
[16] |
Pech-May N W, Mendioroz A, Salazar A. Simultaneous measurement of the in-plane and in-depth thermal diffusivity of solids using pulsed infrared thermography with focused illumination[J]. NDT & E International, 2016, 77: 28-34.
|
[17] |
Bison P, Cernuschi F, Grinzato E. In-depth and in-plane thermal diffusivity measurements of thermal barrier coatings by IR camera: evaluation of ageing[J]. International Journal of Thermophysics, 2008, 29(6): 2149-2161. doi: 10.1007/s10765-008-0421-1
|
[18] |
Parker W J, Jenkins R J, Butler C P, et al. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity[J]. Journal of Applied Physics, 1961, 32(9): 1679-1684. doi: 10.1063/1.1728417
|
[19] |
Adamczyk W, Białecki R, Orlande H R B, et al. Nondestructive, real time technique for in-plane heat diffusivity measurements[J]. International Journal of Heat and Mass Transfer, 2020, 154: 119659. doi: 10.1016/j.ijheatmasstransfer.2020.119659
|
[20] |
Takahashi F, Hamada Y, Hatta I. Two-dimensional effects on measurement of thermal diffusivity by AC calorimetric method: III. advantage of double-heating method[J]. Japanese Journal of Applied Physics, 2000, 39: 6474. doi: 10.1143/JJAP.39.6474
|
[21] |
Huang Zhengxing, Tang Zhenan, Xu Ziqiang, et al. In-plane thermal diffusivity measurement of thin films based on the alternating-current calorimetric method using an optical reflectivity technique[J]. Chinese Physics Letters, 2004, 21(4): 713-715. doi: 10.1088/0256-307X/21/4/035
|
[22] |
Gu Yuqin, Hatta I. Development of ac calorimetric method for thermal diffusivity measurement IV: films with low thermal diffusivity and very thin films[J]. Japanese Journal of Applied Physics, 1991, 30: 1295. doi: 10.1143/JJAP.30.1295
|
[23] |
Hatta I, Sasuga Y, Kato R, et al. Thermal diffusivity measurement of thin films by means of an ac calorimetric method[J]. Review of Scientific Instruments, 1985, 56(8): 1643-1647. doi: 10.1063/1.1138117
|
[24] |
Zhang Xiang, Grigoropoulos C P. Thermal conductivity and diffusivity of free-standing silicon nitride thin films[J]. Review of Scientific Instruments, 1995, 66(2): 1115-1120. doi: 10.1063/1.1145989
|
[25] |
Siqueira M C, Maia R N A, Araujo R M T, et al. Determination of thermal and photothermal properties of an amorphous GaSe9 alloy[J]. Journal of Applied Physics, 2014, 116: 083514. doi: 10.1063/1.4894184
|
[26] |
Somer A, Camilotti F, Costa G F, et al. The thermoelastic bending and thermal diffusion processes influence on photoacoustic signal generation using open photoacoustic cell technique[J]. Journal of Applied Physics, 2013, 114: 063503. doi: 10.1063/1.4817655
|
[27] |
Nikolić P M, Todorović D M, Bojičić A I, et al. Transport properties of carriers in GaAs obtained using the photoacoustic method with the transmission detection configuration[J]. Journal of Physics: Condensed Matter, 1996, 8(30): 5673-5683. doi: 10.1088/0953-8984/8/30/016
|
[28] |
Calderón A, Muñoz Hernández R A, Tomás S A, et al. Method for measurement of the thermal diffusivity in solids: application to metals, semiconductors, and thin materials[J]. Journal of Applied Physics, 1998, 84(11): 6327-6329. doi: 10.1063/1.368957
|
[29] |
Todorović D M, Nikolić P M, Dramićanin M D, et al. Photoacoustic frequency heat-transmission technique: thermal and carrier transport parameters measurements in silicon[J]. Journal of Applied Physics, 1995, 78(9): 5750-5755. doi: 10.1063/1.359637
|
[30] |
胡晨璐, 李大伟, 刘晓凤, 等. 利用表面热透镜方法测量光学元件热扩散率[J]. 中国激光, 2022, 49:2103101 doi: 10.3788/CJL202249.2103101
Hu Chenlu, Li Dawei, Liu Xiaofeng, et al. Measuring thermal diffusivity of optical elements by surface thermal lens method[J]. Chinese Journal of Lasers, 2022, 49: 2103101 doi: 10.3788/CJL202249.2103101
|
[31] |
Younes J, Harajli Z, Soueidan M, et al. Mid-IR photothermal beam deflection technique for fast measurement of thermal diffusivity and highly sensitive subsurface imaging[J]. Journal of Applied Physics, 2020, 127: 173101. doi: 10.1063/1.5144174
|
[32] |
Amin-Chalhoub E, Semmar N, Coudron L, et al. Thermal conductivity measurement of porous silicon by the pulsed-photothermal method[J]. Journal of Physics D: Applied Physics, 2011, 44: 355401. doi: 10.1088/0022-3727/44/35/355401
|
[33] |
Dhouib A, Khalfaoui A, Bouaïcha M, et al. Investigation of thermal and optical properties on polysilicon by the photothermal deflection technique[J]. Journal of Applied Physics, 2018, 123: 161508. doi: 10.1063/1.4986514
|
[34] |
Jackson W B, Amer N M, Boccara A C, et al. Photothermal deflection spectroscopy and detection[J]. Applied Optics, 1981, 20(8): 1333-1344. doi: 10.1364/AO.20.001333
|
[35] |
Cernuschi F, Bison P G, Figari A, et al. Thermal diffusivity measurements by photothermal and thermographic techniques[J]. International Journal of Thermophysics, 2004, 25(2): 439-457. doi: 10.1023/B:IJOT.0000028480.27206.cb
|
[36] |
Nagata S, Nishi T, Miyake S, et al. Development of novel thermal diffusivity analysis by spot periodic heating and infrared radiation thermometer method[J]. Materials, 2020, 13: 4848. doi: 10.3390/ma13214848
|
[37] |
Nolte P W, Malvisalo T, Wagner F, et al. Thermal diffusivity of metals determined by lock-in thermography[J]. Quantitative InfraRed Thermography Journal, 2017, 14(2): 218-225. doi: 10.1080/17686733.2017.1329777
|
[38] |
Bertolotti M, Fabbri L, Sibilia C, et al. Photothermal deflection applied to thermal diffusivity measurements of ceramic (ferrite) materials[J]. Journal of Physics D: Applied Physics, 1988, 21(10S): S14-S16. doi: 10.1088/0022-3727/21/10S/005
|
[39] |
Jeon P, Lee K, Yoo J, et al. Measurement of thermal diffusivity using deformation gradient and phase in the photothermal displacement technique[J]. KSME International Journal, 2003, 17(12): 2078-2086. doi: 10.1007/BF02982448
|
[40] |
Mendioroz A, Fuente-Dacal R, Apiñaniz E, et al. Thermal diffusivity measurements of thin plates and filaments using lock-in thermography[J]. Review of Scientific Instruments, 2009, 80: 074904. doi: 10.1063/1.3176467
|
[41] |
Doualle T, Le Guillous V, Klosek V, et al. Development of UO2 thermal diffusivity measurement with laser techniques[J]. EPJ Web of Conferences, 2021, 253: 07005. doi: 10.1051/epjconf/202125307005
|
[42] |
Salazar A, Oleaga A, Mendioroz A. How far and fast does heat propagate?[J]. Latin-American Journal of Physics Education, 2019, 13: 2307.
|
[43] |
范树海. 高灵敏度光学薄膜弱吸收测量仪的研制[D]. 上海: 中国科学院上海光学精密机械研究所, 2005: 46-48
Fan Shuhai. High sensitive weak absorption apparatus for optical coatings[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2005: 46-48
|
[44] |
王忆楠. 飞行器舱内热分析等效热沉法与对流换热系数辨识研究[D]. 哈尔滨: 哈尔滨工业大学, 2023
Wang Yi’nan. Equivalent heat sink method and identification of convective heat transfer coefficient for thermal analysis in aircraft cabins[D]. Harbin: Harbin Institute of Technology, 2023
|