Volume 37 Issue 5
Mar.  2025
Turn off MathJax
Article Contents
Tang Zhipeng, Guan Yonghong, Jing Yuefeng. Research on uncertainty quantification of single-view CT nonlinear image reconstruction[J]. High Power Laser and Particle Beams, 2025, 37: 056001. doi: 10.11884/HPLPB202537.240326
Citation: Tang Zhipeng, Guan Yonghong, Jing Yuefeng. Research on uncertainty quantification of single-view CT nonlinear image reconstruction[J]. High Power Laser and Particle Beams, 2025, 37: 056001. doi: 10.11884/HPLPB202537.240326

Research on uncertainty quantification of single-view CT nonlinear image reconstruction

doi: 10.11884/HPLPB202537.240326
  • Received Date: 2024-09-13
  • Accepted Date: 2025-01-08
  • Rev Recd Date: 2025-01-08
  • Available Online: 2025-02-11
  • Publish Date: 2025-03-31
  • Flash radiography enables the diagnosis of rapid physical processes, yet the instantaneous nature of image acquisition results in a severely limited number of projections. This study investigates uncertainty quantification methods for computed tomography (CT) image reconstruction under the typical scenario of a single projection view. Current approaches for single-view CT uncertainty quantification often adopt oversimplified physical models, assuming linearized optical path equations with Gaussian noise. To address this limitation, we derive a more realistic nonlinear reconstruction framework based on the Lambert-Beer’s law, constructing an exponential attenuation model for transmittance with an integrated Gaussian noise term. This formulation yields a nonlinear posterior probability density function, which is subsequently sampled using the Randomize-Then-Optimize (RTO) algorithm combined with Gibbs sampling. The reconstructed image and its associated uncertainty are obtained through statistical analysis of the sampled data. Numerical simulations validate the proposed method, with comparative results against conventional linearized models demonstrating its superior potential for accurate uncertainty estimation in image reconstruction.
  • loading
  • [1]
    马勋, 邓建军, 姜苹, 等. 流体动力学实验用闪光X光机研究进展[J]. 强激光与粒子束, 2014, 26:010201 doi: 10.3788/HPLPB20142601.10201

    Ma Xun, Deng Jianjun, Jiang Ping, et al. Review of flash X-ray generator applied to hydrokinetical experiments[J]. High Power Laser and Particle Beams, 2014, 26: 010201 doi: 10.3788/HPLPB20142601.10201
    [2]
    管永红, 王鹏来, 景越峰. 基于贝叶斯准则的闪光照相图像重建[J]. 强激光与粒子束, 2011, 23(9):2495-2498 doi: 10.3788/HPLPB20112309.2495

    Guan Yonghong, Wang Penglai, Jing Yuefeng. Reconstruction of flash radiographic image based on Bayesian approach[J]. High Power Laser and Particle Beams, 2011, 23(9): 2495-2498 doi: 10.3788/HPLPB20112309.2495
    [3]
    管永红, 景越峰. 基于自适应准则的闪光照相图像重建[J]. 强激光与粒子束, 2009, 21(2):260-264

    Guan Yonghong, Jing Yuefeng. Adaptive reconstruction of flash radiographic image[J]. High Power Laser and Particle Beams, 2009, 21(2): 260-264
    [4]
    景越峰, 刘军, 管永红. 改进的约束共轭梯度闪光照相图像重建算法[J]. 强激光与粒子束, 2011, 23(8):2201-2204 doi: 10.3788/HPLPB20112308.2201

    Jing Yuefeng, Liu Jun, Guan Yonghong. Improved constrained conjugate gradient reconstruction algorithm for flash radiographic image[J]. High Power Laser and Particle Beams, 2011, 23(8): 2201-2204 doi: 10.3788/HPLPB20112308.2201
    [5]
    景越峰, 管永红, 张小琳. 基于约束优化的闪光照相图像重建算法[J]. 强激光与粒子束, 2016, 28:094002 doi: 10.11884/HPLPB201628.150498

    Jing Yuefeng, Guan Yonghong, Zhang Xiaolin. Constrained optimization reconstruction for flash radiographic image[J]. High Power Laser and Particle Beams, 2016, 28: 094002 doi: 10.11884/HPLPB201628.150498
    [6]
    Howard M, Fowler M, Luttman A, et al. Bayesian Abel inversion in quantitative X-ray radiography[J]. SIAM Journal on Scientific Computing, 2016, 38(3): B396-B413. doi: 10.1137/15M1018721
    [7]
    王忠淼, 刘军, 景越峰, 等. 基于贝叶斯分层模型的MCMC方法在闪光图像重建中的应用[J]. 强激光与粒子束, 2018, 30:114004 doi: 10.11884/HPLPB201830.180123

    Wang Zhongmiao, Liu Jun, Jing Yuefeng, et al. Applications of MCMC method based on Bayesian hierarchical model in flash radiography reconstruction[J]. High Power Laser and Particle Beams, 2018, 30: 114004 doi: 10.11884/HPLPB201830.180123
    [8]
    Li Xinge, Xu Haibo, Zheng Na, et al. Uncertainty quantification of density reconstruction using MCMC method in high-energy X-ray radiography[J]. Communications in Computational Physics, 2020, 27(5): 1485-1504. doi: 10.4208/cicp.OA-2019-0060
    [9]
    Bardsley J M. MCMC-based image reconstruction with uncertainty quantification[J]. SIAM Journal on Scientific Computing, 2012, 34(3): A1316-A1332. doi: 10.1137/11085760X
    [10]
    Siddon R L. Prism representation: a 3D ray-tracing algorithm for radiotherapy applications[J]. Physics in Medicine & Biology, 1985, 30(8): 817-824.
    [11]
    刘进, 张小琳, 景越峰, 等. 含系统模糊的闪光照相正向成像技术研究及应用[J]. 强激光与粒子束, 2015, 27:044003 doi: 10.11884/HPLPB201527.044003

    Liu Jin, Zhang Xiaolin, Jing Yuefeng, et al. Research and application of forward imaging technology with systemic blur[J]. High Power Laser and Particle Beams, 2015, 27: 044003 doi: 10.11884/HPLPB201527.044003
    [12]
    Bardsley J M, Solonen A, Haario H, et al. Randomize-then-optimize: a method for sampling from posterior distributions in nonlinear inverse problems[J]. SIAM Journal on Scientific Computing, 2014, 36(4): A1895-A1910. doi: 10.1137/140964023
    [13]
    景越峰, 张小琳, 管永红, 等. 基于约束共轭梯度的高能闪光照相图像复原算法[J]. 强激光与粒子束, 2009, 21(2):277-280

    Jing Yuefeng, Zhang Xiaolin, Guan Yonghong, et al. Constrained conjugate gradient algorithm for image restoration in high-energy radiography[J]. High Power Laser and Particle Beams, 2009, 21(2): 277-280
    [14]
    Díaz-Francés E, Rubio F J. On the existence of a normal approximation to the distribution of the ratio of two independent normal random variables[J]. Statistical Papers, 2013, 54(2): 309-323. doi: 10.1007/s00362-012-0429-2
    [15]
    Asaki T J, Chartrand R, Vixie K R, et al. Abel inversion using total-variation regularization[J]. Inverse Problems, 2005, 21(6): 1895-1903. doi: 10.1088/0266-5611/21/6/006
    [16]
    钱伟新, 刘瑞根, 王婉丽, 等. 基于广义变分正则化的闪光照相图像重建算法[J]. 强激光与粒子束, 2009, 21(12):1903-1907

    Qian Weixin, Liu Ruigen, Wang Wanli, et al. Generalized variation-based regularization algorithm for image reconstruction in high energy X-ray radiography[J]. High Power Laser and Particle Beams, 2009, 21(12): 1903-1907
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views (119) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return