Citation: | Lan Xiang, Li Xuecheng, Yang Shunyi, et al. Theoretical investigation into effect of laser focal spot size on extreme ultraviolet radiation[J]. High Power Laser and Particle Beams, 2025, 37: 052003. doi: 10.11884/HPLPB202537.240327 |
[1] |
Wagner C, Harned N. EUV lithography: lithography gets extreme[J]. Nature Photonics, 2010, 4(1): 24-26. doi: 10.1038/nphoton.2009.251
|
[2] |
Bakshi V. EUV sources for lithography[M]. Bellingham: SPIE, 2006.
|
[3] |
Banine V Y, Koshelev K N, Swinkels G H P M. Physical processes in EUV sources for microlithography[J]. Journal of Physics D: Applied Physics, 2011, 44: 253001. doi: 10.1088/0022-3727/44/25/253001
|
[4] |
Versolato O O. Physics of laser-driven tin plasma sources of EUV radiation for nanolithography[J]. Plasma Sources Science and Technology, 2019, 28: 083001. doi: 10.1088/1361-6595/ab3302
|
[5] |
Endo A, Hoshino H, Suganuma T, et al. Laser produced EUV light source development for HVM[C]//Proceedings of SPIE 6517, Emerging Lithographic Technologies XI. San Jose: SPIE, 2007: 65170O.
|
[6] |
Freeman J R, Harilal S S, Hassanein A. Enhancements of extreme ultraviolet emission using prepulsed Sn laser-produced plasmas for advanced lithography applications[J]. Journal of Applied Physics, 2011, 110: 083303. doi: 10.1063/1.3647779
|
[7] |
Nishihara K, Sunahara A, Sasaki A, et al. Advanced laser-produced EUV light source for HVM with conversion efficiency of 5-7% and B-field mitigation of ions[C]//Proceedings of SPIE 6921, Emerging Lithographic Technologies XII. San Jose: SPIE, 2008: 69210Y.
|
[8] |
Tanaka H, Matsumoto A, Akinaga K, et al. Comparative study on emission characteristics of extreme ultraviolet radiation from CO2 and Nd: YAG laser-produced tin plasmas[J]. Applied Physics Letters, 2005, 87: 041503. doi: 10.1063/1.1989441
|
[9] |
Aota T, Tomie T. Ultimate efficiency of extreme ultraviolet radiation from a laser-produced plasma[J]. Physical Review Letters, 2005, 94: 015004. doi: 10.1103/PhysRevLett.94.015004
|
[10] |
Okuno T, Fujioka S, Nishimura H, et al. Low-density tin targets for efficient extreme ultraviolet light emission from laser-produced plasmas[J]. Applied Physics Letters, 2006, 88: 161501. doi: 10.1063/1.2195693
|
[11] |
林楠, 杨文河, 陈韫懿, 等. 极紫外光刻光源的研究进展及发展趋势[J]. 激光与光电子学进展, 2022, 59:0922002
Lin Nan, Yang Wenhe, Chen Yunyi, et al. Research progress and development trend of extreme ultraviolet lithography source[J]. Laser & Optoelectronics Progress, 2022, 59: 0922002
|
[12] |
Miyamoto S, Shimoura A, Amano S, et al. Laser wavelength and spot diameter dependence of extreme ultraviolet conversion efficiency in ω, 2ω, and 3ω Nd: YAG laser-produced plasmas[J]. Applied Physics Letters, 2005, 86: 261502. doi: 10.1063/1.1968415
|
[13] |
Tao Y, Harilal S S, Tillack M S, et al. Effect of focal spot size on in-band 13.5 nm extreme ultraviolet emission from laser-produced Sn plasma[J]. Optics Letters, 2006, 31(16): 2492-2494. doi: 10.1364/OL.31.002492
|
[14] |
Fujioka S, Nishimura H, Nishihara K, et al. Opacity effect on extreme ultraviolet radiation from laser-produced tin plasmas[J]. Physical Review Letters, 2005, 95: 235004. doi: 10.1103/PhysRevLett.95.235004
|
[15] |
Harilal S S, Coons R W, Hough P, et al. Influence of spot size on extreme ultraviolet efficiency of laser-produced Sn plasmas[J]. Applied Physics Letters, 2009, 95: 221501. doi: 10.1063/1.3270526
|
[16] |
Coons R W, Campos D, Crank M, et al. Comparison of EUV spectral and ion emission features from laser-produced Sn and Li plasmas[C]//Proceedings of SPIE 7636, Extreme Ultraviolet (EUV) Lithography. San Jose: SPIE, 2010: 763636.
|
[17] |
Atzeni S, Meyer-ter-Vehn J. 惯性聚变物理[M]. 沈百飞, 译. 北京: 科学出版社, 2008
Atzeni S, Meyer-ter-Vehn J. Physics of inertial fusion[M]. Shen Baifei, trans. Beijing: Science Press, 2008
|
[18] |
Hu G Y, Zhang J Y, Zheng J, et al. Angular distribution and conversion of multi-keV L-shell X-ray sources produced from nanosecond laser irradiated thick-foil targets[J]. Laser and Particle Beams, 2008, 26(4): 661-670. doi: 10.1017/S0263034608000682
|
[19] |
Hu Guangyue, Zheng Jian, Shen Baifei, et al. Characterization of a multi-keV X-ray source produced by nanosecond laser irradiation of a solid target: the influence of laser focus spot and target thickness[J]. Physics of Plasmas, 2008, 15: 023103. doi: 10.1063/1.2831034
|
[20] |
Hu Guangyue, Liu Shenye, Zheng Jian, et al. Efficient K-shell X-ray sources produced with titanium foils[J]. Physics of Plasmas, 2007, 14: 033103. doi: 10.1063/1.2446286
|
[21] |
胡广月, 刘慎业, 张继彦, 等. 长脉冲keV X射线源的辐射特征[J]. 强激光与粒子束, 2007, 19(5):771-776
Hu Guangyue, Liu Shenye, Zhang Jiyan, et al. Emission characteristic of long laser pulse keV X-ray source[J]. High Power Laser and Particle Beams, 2007, 19(5): 771-776
|
[22] |
Fabbro R, Max C, Fabre E. Planar laser-driven ablation: effect of inhibited electron thermal conduction[J]. Physics of Fluids, 1985, 28(5): 1463-1481. doi: 10.1063/1.864982
|
[23] |
Merino M, Cichocki F, Ahedo E. A collisionless plasma thruster plume expansion model[J]. Plasma Sources Science and Technology, 2015, 24: 035006. doi: 10.1088/0963-0252/24/3/035006
|
[24] |
Spitzer L Jr, Härm R. Transport phenomena in a completely ionized gas[J]. Physical Review, 1953, 89(5): 977-981. doi: 10.1103/PhysRev.89.977
|
[25] |
Sasaki A, Sunahara A, Furukawa H, et al. Modeling of radiative properties of Sn plasmas for extreme-ultraviolet source[J]. Journal of Applied Physics, 2010, 107: 113303. doi: 10.1063/1.3373427
|
[26] |
Nishihara K, Sunahara A, Sasaki A, et al. Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography[J]. Physics of Plasmas, 2008, 15: 056708. doi: 10.1063/1.2907154
|