Volume 37 Issue 5
Mar.  2025
Turn off MathJax
Article Contents
Ding Jiafan, Li Hang, Jiang Wei, et al. Implosion experiment of neutron yield in indirectly driven double-metal-shell target[J]. High Power Laser and Particle Beams, 2025, 37: 052002. doi: 10.11884/HPLPB202537.240335
Citation: Ding Jiafan, Li Hang, Jiang Wei, et al. Implosion experiment of neutron yield in indirectly driven double-metal-shell target[J]. High Power Laser and Particle Beams, 2025, 37: 052002. doi: 10.11884/HPLPB202537.240335

Implosion experiment of neutron yield in indirectly driven double-metal-shell target

doi: 10.11884/HPLPB202537.240335
  • Received Date: 2024-09-19
  • Accepted Date: 2024-11-21
  • Rev Recd Date: 2024-11-21
  • Available Online: 2025-01-13
  • Publish Date: 2025-03-31
  • This paper discusses early experiments on indirect laser-driven implosion of double-metal-shell targets conducted with a hundred-kilojoule-class laser facility. The design of the double-metal-shell target is derived from the volume ignition scheme, which decouples the radiation ablation and implosion compression processes, thereby improving the robustness of the implosion. However, due to the high difficulty in manufacturing the double-metal-shell target, the neutron yield in the initial experiments was much lower than expected from simulations. To address this issue, two key improvements are proposed: first, optimizing the joint design of the outer shell to reduce the impact of hydrodynamic instability, thus to improve the collision efficiency of the inner and outer shells and the implosion efficiency of the inner core; second, enhancing the coupling efficiency of the hohlraum-target to improve the effective transfer of laser energy. With these improvements, the compression performance and implosion efficiency of the target were significantly enhanced, resulting in a substantial increase in neutron yield, from $ 5.0\times {10}^{7} $ to $ 7.1\times {10}^{8} $.
  • loading
  • [1]
    Hurricane O A, Patel P K, Betti R, et al. Physics principles of inertial confinement fusion and U. S. program overview[J]. Reviews of Modern Physics, 2023, 95: 025005. doi: 10.1103/RevModPhys.95.025005
    [2]
    Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
    [3]
    王立锋, 叶文华, 陈竹, 等. 激光聚变内爆流体不稳定性基础问题研究进展[J]. 强激光与粒子束, 2021, 33:012001 doi: 10.11884/HPLPB202132.200173

    Wang Lifeng, Ye Wenhua, Chen Zhu, et al. Review of hydrodynamic instabilities in inertial confinement fusion implosions[J]. High Power Laser and Particle Beams, 2021, 33: 012001 doi: 10.11884/HPLPB202132.200173
    [4]
    Wang Lifeng, Ye Wenhua, He Xiantu, et al. Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions[J]. Science China Physics, Mechanics & Astronomy, 2017, 60: 055201.
    [5]
    Varnum W S, Delamater N D, Evans S C, et al. Progress toward ignition with noncryogenic double-shell capsules[J]. Physical Review Letters, 2000, 84(22): 5153-5155. doi: 10.1103/PhysRevLett.84.5153
    [6]
    Amendt P, Colvin J D, Tipton R E, et al. Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility: design and analysis[J]. Physics of Plasmas, 2002, 9(5): 2221-2233. doi: 10.1063/1.1459451
    [7]
    Amendt P, Cerjan C, Hamza A, et al. Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums[J]. Physics of Plasmas, 2007, 14: 056312. doi: 10.1063/1.2716406
    [8]
    Montgomery D S, Daughton W S, Albright B J, et al. Design considerations for indirectly driven double shell capsules[J]. Physics of Plasmas, 2018, 25: 092706. doi: 10.1063/1.5042478
    [9]
    Haines B M, Daughton W S, Loomis E N, et al. Computational study of instability and fill tube mitigation strategies for double shell implosions[J]. Physics of Plasmas, 2019, 26: 102705. doi: 10.1063/1.5115031
    [10]
    Stark D J, Sauppe J P, Haines B M, et al. Detrimental effects and mitigation of the joint feature in double shell implosion simulations[J]. Physics of Plasmas, 2021, 28: 052703. doi: 10.1063/5.0046435
    [11]
    Tian Chao, Yu Minghai, Shan Lianqiang, et al. Diagnosis of indirectly driven double shell targets with point-projection hard X-ray radiography[J]. Matter and Radiation at Extremes, 2024, 9: 027602. doi: 10.1063/5.0045112
    [12]
    Roycroft R, Sauppe J P, Bradley P A. Double cylinder target design for study of hydrodynamic instabilities in multi-shell ICF[J]. Physics of Plasmas, 2022, 29: 032704. doi: 10.1063/5.0083190
    [13]
    Keiter P A, Loomis E N, Sauppe J P, et al. Imaging the inner shell of a double shell implosion with high-energy X-rays[C]//The 63rd Annual Meeting of APS Division of Plasma Physics. 2021: NO04. 002.
    [14]
    Li Zhichao, Jiang Xiaohua, Liu Shenye, et al. A novel flat-response X-ray detector in the photon energy range of 0.1-4 keV[J]. Review of Scientific Instruments, 2010, 81: 073504. doi: 10.1063/1.3460269
    [15]
    Li Zhichao, Zhu Xiaoli, Jiang Xiaohua, et al. Note: continuing improvements on the novel flat-response X-ray detector[J]. Review of Scientific Instruments, 2011, 82: 106106. doi: 10.1063/1.3657158
    [16]
    Yang Dong, Li Zhichao, Guo Liang, et al. The influence of laser clipped by the laser entrance hole on hohlraum radiation measurement on Shenguang-III prototype[J]. Review of Scientific Instruments, 2014, 85: 033504. doi: 10.1063/1.4867741
    [17]
    Guo Liang, Li Sanwei, Zheng Jian, et al. A compact flat-response X-ray detector for the radiation flux in the range from 1.6 keV to 4.4 keV[J]. Measurement Science and Technology, 2012, 23: 065902. doi: 10.1088/0957-0233/23/6/065902
    [18]
    Guo Liang, Li Shanwei, Li Zhichao, et al. Multiple angle measurement and modeling of M-band X-ray fluxes from vacuum hohlraum[J]. Physics of Plasmas, 2016, 23: 092709. doi: 10.1063/1.4962519
    [19]
    Zha Weiyi, Yang Dong, Xu Tao, et al. Backscatter spectra measurements of the two beams on the same cone on Shenguang-III laser facility[J]. Review of Scientific Instruments, 2018, 89: 013501. doi: 10.1063/1.5005501
    [20]
    Jiang Shaoen, Wang Feng, Ding Yongkun, et al. Experimental progress of inertial confinement fusion based at the ShenGuang-III laser facility in China[J]. Nuclear Fusion, 2019, 59: 032006. doi: 10.1088/1741-4326/aabdb6
    [21]
    Glebov V Y, Sangster T C, Stoeckl C, et al. The National Ignition Facility neutron time-of-flight system and its initial performance (invited)[J]. Review of Scientific Instruments, 2010, 81: 10D325. doi: 10.1063/1.3492351
    [22]
    Guo Liang, Ding Yongkun, Xing Pifeng, et al. Uranium hohlraum with an ultrathin uranium–nitride coating layer for low hard X-ray emission and high radiation temperature[J]. New Journal of Physics, 2015, 17: 113004. doi: 10.1088/1367-2630/17/11/113004
    [23]
    Moody J D, Landen O L, Divol L, et al. Semi-empirical “leaky-bucket” model of laser-driven X-ray cavities[J]. Physics of Plasmas, 2017, 24: 042709. doi: 10.1063/1.4981221
    [24]
    Ramis R, Schmalz R, Meyer-Ter-Vehn J. MULTI — A computer code for one-dimensional multigroup radiation hydrodynamics[J]. Computer Physics Communications, 1998, 49(3): 475-505.
    [25]
    Ramis R, Eidmann K, Meyer-ter-Vehn J, et al. MULTI-fs — A computer code for laser–plasma interaction in the femtosecond regime[J]. Computer Physics Communications, 2012, 183(3): 637-655. doi: 10.1016/j.cpc.2011.10.016
    [26]
    Ramis R, Meyer-Ter-Vehn J. MULTI-IFE — A one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations[J]. Computer Physics Communications, 2016, 203: 226-237. doi: 10.1016/j.cpc.2016.02.014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article views (149) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return