Citation: | Ding Jiafan, Li Hang, Jiang Wei, et al. Implosion experiment of neutron yield in indirectly driven double-metal-shell target[J]. High Power Laser and Particle Beams, 2025, 37: 052002. doi: 10.11884/HPLPB202537.240335 |
[1] |
Hurricane O A, Patel P K, Betti R, et al. Physics principles of inertial confinement fusion and U. S. program overview[J]. Reviews of Modern Physics, 2023, 95: 025005. doi: 10.1103/RevModPhys.95.025005
|
[2] |
Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
|
[3] |
王立锋, 叶文华, 陈竹, 等. 激光聚变内爆流体不稳定性基础问题研究进展[J]. 强激光与粒子束, 2021, 33:012001 doi: 10.11884/HPLPB202132.200173
Wang Lifeng, Ye Wenhua, Chen Zhu, et al. Review of hydrodynamic instabilities in inertial confinement fusion implosions[J]. High Power Laser and Particle Beams, 2021, 33: 012001 doi: 10.11884/HPLPB202132.200173
|
[4] |
Wang Lifeng, Ye Wenhua, He Xiantu, et al. Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions[J]. Science China Physics, Mechanics & Astronomy, 2017, 60: 055201.
|
[5] |
Varnum W S, Delamater N D, Evans S C, et al. Progress toward ignition with noncryogenic double-shell capsules[J]. Physical Review Letters, 2000, 84(22): 5153-5155. doi: 10.1103/PhysRevLett.84.5153
|
[6] |
Amendt P, Colvin J D, Tipton R E, et al. Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility: design and analysis[J]. Physics of Plasmas, 2002, 9(5): 2221-2233. doi: 10.1063/1.1459451
|
[7] |
Amendt P, Cerjan C, Hamza A, et al. Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums[J]. Physics of Plasmas, 2007, 14: 056312. doi: 10.1063/1.2716406
|
[8] |
Montgomery D S, Daughton W S, Albright B J, et al. Design considerations for indirectly driven double shell capsules[J]. Physics of Plasmas, 2018, 25: 092706. doi: 10.1063/1.5042478
|
[9] |
Haines B M, Daughton W S, Loomis E N, et al. Computational study of instability and fill tube mitigation strategies for double shell implosions[J]. Physics of Plasmas, 2019, 26: 102705. doi: 10.1063/1.5115031
|
[10] |
Stark D J, Sauppe J P, Haines B M, et al. Detrimental effects and mitigation of the joint feature in double shell implosion simulations[J]. Physics of Plasmas, 2021, 28: 052703. doi: 10.1063/5.0046435
|
[11] |
Tian Chao, Yu Minghai, Shan Lianqiang, et al. Diagnosis of indirectly driven double shell targets with point-projection hard X-ray radiography[J]. Matter and Radiation at Extremes, 2024, 9: 027602. doi: 10.1063/5.0045112
|
[12] |
Roycroft R, Sauppe J P, Bradley P A. Double cylinder target design for study of hydrodynamic instabilities in multi-shell ICF[J]. Physics of Plasmas, 2022, 29: 032704. doi: 10.1063/5.0083190
|
[13] |
Keiter P A, Loomis E N, Sauppe J P, et al. Imaging the inner shell of a double shell implosion with high-energy X-rays[C]//The 63rd Annual Meeting of APS Division of Plasma Physics. 2021: NO04. 002.
|
[14] |
Li Zhichao, Jiang Xiaohua, Liu Shenye, et al. A novel flat-response X-ray detector in the photon energy range of 0.1-4 keV[J]. Review of Scientific Instruments, 2010, 81: 073504. doi: 10.1063/1.3460269
|
[15] |
Li Zhichao, Zhu Xiaoli, Jiang Xiaohua, et al. Note: continuing improvements on the novel flat-response X-ray detector[J]. Review of Scientific Instruments, 2011, 82: 106106. doi: 10.1063/1.3657158
|
[16] |
Yang Dong, Li Zhichao, Guo Liang, et al. The influence of laser clipped by the laser entrance hole on hohlraum radiation measurement on Shenguang-III prototype[J]. Review of Scientific Instruments, 2014, 85: 033504. doi: 10.1063/1.4867741
|
[17] |
Guo Liang, Li Sanwei, Zheng Jian, et al. A compact flat-response X-ray detector for the radiation flux in the range from 1.6 keV to 4.4 keV[J]. Measurement Science and Technology, 2012, 23: 065902. doi: 10.1088/0957-0233/23/6/065902
|
[18] |
Guo Liang, Li Shanwei, Li Zhichao, et al. Multiple angle measurement and modeling of M-band X-ray fluxes from vacuum hohlraum[J]. Physics of Plasmas, 2016, 23: 092709. doi: 10.1063/1.4962519
|
[19] |
Zha Weiyi, Yang Dong, Xu Tao, et al. Backscatter spectra measurements of the two beams on the same cone on Shenguang-III laser facility[J]. Review of Scientific Instruments, 2018, 89: 013501. doi: 10.1063/1.5005501
|
[20] |
Jiang Shaoen, Wang Feng, Ding Yongkun, et al. Experimental progress of inertial confinement fusion based at the ShenGuang-III laser facility in China[J]. Nuclear Fusion, 2019, 59: 032006. doi: 10.1088/1741-4326/aabdb6
|
[21] |
Glebov V Y, Sangster T C, Stoeckl C, et al. The National Ignition Facility neutron time-of-flight system and its initial performance (invited)[J]. Review of Scientific Instruments, 2010, 81: 10D325. doi: 10.1063/1.3492351
|
[22] |
Guo Liang, Ding Yongkun, Xing Pifeng, et al. Uranium hohlraum with an ultrathin uranium–nitride coating layer for low hard X-ray emission and high radiation temperature[J]. New Journal of Physics, 2015, 17: 113004. doi: 10.1088/1367-2630/17/11/113004
|
[23] |
Moody J D, Landen O L, Divol L, et al. Semi-empirical “leaky-bucket” model of laser-driven X-ray cavities[J]. Physics of Plasmas, 2017, 24: 042709. doi: 10.1063/1.4981221
|
[24] |
Ramis R, Schmalz R, Meyer-Ter-Vehn J. MULTI — A computer code for one-dimensional multigroup radiation hydrodynamics[J]. Computer Physics Communications, 1998, 49(3): 475-505.
|
[25] |
Ramis R, Eidmann K, Meyer-ter-Vehn J, et al. MULTI-fs — A computer code for laser–plasma interaction in the femtosecond regime[J]. Computer Physics Communications, 2012, 183(3): 637-655. doi: 10.1016/j.cpc.2011.10.016
|
[26] |
Ramis R, Meyer-Ter-Vehn J. MULTI-IFE — A one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations[J]. Computer Physics Communications, 2016, 203: 226-237. doi: 10.1016/j.cpc.2016.02.014
|