Volume 37 Issue 5
Mar.  2025
Turn off MathJax
Article Contents
Zhang Jing, Qu Guanghui, Zhang Lin, et al. Design and application of high-voltage nanosecond switches based on PCSS triggered thyristor surge suppressor arrays[J]. High Power Laser and Particle Beams, 2025, 37: 055002. doi: 10.11884/HPLPB202537.240356
Citation: Zhang Jing, Qu Guanghui, Zhang Lin, et al. Design and application of high-voltage nanosecond switches based on PCSS triggered thyristor surge suppressor arrays[J]. High Power Laser and Particle Beams, 2025, 37: 055002. doi: 10.11884/HPLPB202537.240356

Design and application of high-voltage nanosecond switches based on PCSS triggered thyristor surge suppressor arrays

doi: 10.11884/HPLPB202537.240356
  • Received Date: 2024-10-11
  • Accepted Date: 2025-02-13
  • Rev Recd Date: 2025-02-13
  • Available Online: 2025-03-08
  • Publish Date: 2025-03-31
  • The solid-state high-voltage pulse switch with high index, compact structure and good stability is of great significance to the progress of pulse power technology. This paper proposes a high-voltage nanosecond switching technology route based on Photoconductive Semiconductor Switches (PCSS) and thyristor surge suppressor (TSS) arrays, and a new type of high voltage switching module (PCSS triggering thyristor surge suppressors module, PTTSSM) is developed by using PCSS, which is convenient for realizing the high-voltage isolation, as the triggering unit of TSS arrays. The 20 kV PTTSSM has a peak output current of 23.7 A, a pulse width of 122.1 ns, a rise time and a fall time of 55.9 ns and 128.3 ns, respectively, and a size of 60 mm×60 mm×40 mm. The 100 kV PTTSSM has an adjustable peak output voltage of 60−100 kV, a maximum peak output current of 356 A, a pulse width of 1.308 µs, rise time and fall time of 160.4 ns and 2.454 µs, respectively, and its size is 150 mm×100 mm×50 mm. All of them can work stably for a long time. Pulse power supply based on a new solid-state switching module successfully generates a large number of stable low-temperature plasmas in organic wastewater treatment experiments, verifying the feasibility and effectiveness of the switching module-driven plasma generation.
  • loading
  • [1]
    丛培天. 中国脉冲功率科技进展简述[J]. 强激光与粒子束, 2020, 32:025002 doi: 10.11884/HPLPB202032.200040

    Cong Peitian. Review of Chinese pulsed power science and technology[J]. High Power Laser and Particle Beams, 2020, 32: 025002 doi: 10.11884/HPLPB202032.200040
    [2]
    Akiyama H, Sakugawa T, Namihira T, et al. Industrial applications of pulsed power technology[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(5): 1051-1064. doi: 10.1109/TDEI.2007.4339465
    [3]
    Kim A A, Kovalchuk B M, Kumpyak E V, et al. Linear transformer driver with a 750-kA current and a 400-ns current risetime[J]. Russian Physics Journal, 1999, 42(12): 985-989. doi: 10.1007/BF02512407
    [4]
    Sugai T, Liu Wei, Tokuchi A, et al. Influence of a circuit parameter for plasma water treatment by an inductive energy storage circuit using semiconductor opening switch[J]. IEEE Transactions on Plasma Science, 2013, 41(4): 967-974. doi: 10.1109/TPS.2013.2251359
    [5]
    Jiang Weihua, Yatsui K. Compact pulsed power generators for industrial applications[J]. IEEJ Transactions on Fundamentals and Materials, 2004, 124(6): 451-455. doi: 10.1541/ieejfms.124.451
    [6]
    Renz G, Holzschuh F, Zeyfang E. PFNs switched with stacked SCRs at 20 kV, 500 J, and 100 Hz REP-rate[C]//Proceedings of the 11th IEEE International Pulsed Power Conference. 1997: 390-395.
    [7]
    王磊, 章程, 高迎慧, 等. 晶闸管串联开关及同步触发系统研制[J]. 强激光与粒子束, 2015, 27:115001 doi: 10.11884/HPLPB201527.115001

    Wang Lei, Zhang Cheng, Gao Yinghui, et al. Design of series-connected thyristor switch and synchronous triggering circuit[J]. High Power Laser and Particle Beams, 2015, 27: 115001 doi: 10.11884/HPLPB201527.115001
    [8]
    Xu She, Huang A Q, Lucía O, et al. Review of silicon carbide power devices and their applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8193-8205. doi: 10.1109/TIE.2017.2652401
    [9]
    Okamura K, Naito F, Takayama K, et al. Development of a pulsed power supply utilizing 13 kV class SiC-MOSFETs[J]. Materials Science Forum, 2020, 1004: 1141-1147. doi: 10.4028/www.scientific.net/MSF.1004.1141
    [10]
    李帅康, 黄邦斗, 章程, 等. 用于放电等离子体的重频固态纳秒脉冲电源[J]. 电力电子技术, 2021, 55(10):8-11 doi: 10.3969/j.issn.1000-100X.2021.10.004

    Li Shuaikang, Huang Bangdou, Zhang Cheng, et al. Repetitive solid-state nanosecond pulse power supply for discharge plasma[J]. Power Electronics, 2021, 55(10): 8-11 doi: 10.3969/j.issn.1000-100X.2021.10.004
    [11]
    范华峰, 杨昊, 申巍, 等. 基于级串式MOSFET管的高压重频脉冲电源设计[J]. 国外电子测量技术, 2022, 41(8):153-158

    Fan Huafeng, Yang Hao, Shen Wei, et al. High voltage repetitive pulse power supply based on cascade MOSFET[J]. Foreign Electronic Measurement Technology, 2022, 41(8): 153-158
    [12]
    Zorngiebel V, Hecquard M, Spahn E, et al. Modular 50-kV IGBT switch for pulsed-power applications[J]. IEEE Transactions on Plasma Science, 2011, 39(1): 364-367. doi: 10.1109/TPS.2010.2068061
    [13]
    宋礼伟. 高压大功率脉冲电源关键技术研究[D]. 武汉: 华中科技大学, 2019

    Song Liwei. Research on key technology of high voltage high power pulse power supplyD]. Wuhan: Huazhong University of Science and Technology, 2019
    [14]
    李祥超, 周中山, 陈则煌, 等. 电涌抑制晶闸管(TSS)冲击性能的分析[J]. 电瓷避雷器, 2015(5):139-144

    Li Xiangchao, Zhou Zhongshan, Chen Zehuang, et al. Analysis on the impact performance of thyristor surge suppressors[J]. Insulators and Surge Arresters, 2015(5): 139-144
    [15]
    孙艳玲, 杨萌, 宋朝阳, 等. 低导通电阻4H-SiC光导开关[J]. 强激光与粒子束, 2015, 27:125003 doi: 10.11884/HPLPB201527.125003

    Sun Yanling, Yang Meng, Song Chaoyang, et al. 4H-SiC photoconductive switch with low on-state resistance[J]. High Power Laser and Particle Beams, 2015, 27: 125003 doi: 10.11884/HPLPB201527.125003
    [16]
    罗燕, 丁蕾, 赵毅, 等. SiC光导开关衬底与电极界面场强仿真与优化设计[J]. 强激光与粒子束, 2022, 34:063004 doi: 10.11884/HPLPB202234.210360

    Luo Yan, Ding Lei, Zhao Yi, et al. Optimization design and simulation of electric field at interface between substrate and electrode of photoconductive switch[J]. High Power Laser and Particle Beams, 2022, 34: 063004 doi: 10.11884/HPLPB202234.210360
    [17]
    杨彪, 孙逊, 李阳凡, 等. 激光能量分布对GaN基光导开关导通特性的影响[J]. 强激光与粒子束, 2024, 36:115005 doi: 10.11884/HPLPB202436.240321

    Yang Biao, Sun Xun, Li Yangfan, et al. Influence of laser spot energy distribution on the on-state performance of GaN-based photoconductive switches[J]. High Power Laser and Particle Beams, 2024, 36: 115005 doi: 10.11884/HPLPB202436.240321
    [18]
    屈光辉. GaAs光电导开关中载流子输运规律研究[D]. 西安: 西安理工大学, 2009

    Qu Guanghui. Study of the tranport of GaAs photoconductive semiconductor switches[D]. Xi'an: Xi'an University of Technology, 2009
    [19]
    赵越, 王传伟, 王凌云, 等. 半导体放电管固体场畸变三电极开关[J]. 强激光与粒子束, 2012, 24(4):868-870 doi: 10.3788/HPLPB20122404.0868

    Zhao Yue, Wang Chuanwei, Wang Lingyun, et al. Semiconductor arrester solid field distortion three-electrode discharge switch[J]. High Power Laser and Particle Beams, 2012, 24(4): 868-870 doi: 10.3788/HPLPB20122404.0868
    [20]
    Du Zhehua, Lin Xin. Research progress in application of low temperature plasma technology for wastewater treatment[J]. IOP Conference Series: Earth and Environmental Science, 2020, 512: 012031. doi: 10.1088/1755-1315/512/1/012031
    [21]
    韩家林, 兰青青, 李新月, 等. 低温等离子体协同催化处理有机废水进展[J]. 精细石油化工进展, 2023, 24(6):53-58

    Han Jialin, Lan Qingqing, Li Xinyue, et al. Progress of low temperature plasma synergistic catalytic treatment of organic wastewater[J]. Advances in Fine Petrochemicals, 2023, 24(6): 53-58
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article views (73) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return