Volume 37 Issue 5
Mar.  2025
Turn off MathJax
Article Contents
Zhang Hao, Zhao Feng, Lin Hanwen, et al. Design of injector dump beam window for the electron beam test platform of S3FEL[J]. High Power Laser and Particle Beams, 2025, 37: 054001. doi: 10.11884/HPLPB202537.240365
Citation: Zhang Hao, Zhao Feng, Lin Hanwen, et al. Design of injector dump beam window for the electron beam test platform of S3FEL[J]. High Power Laser and Particle Beams, 2025, 37: 054001. doi: 10.11884/HPLPB202537.240365

Design of injector dump beam window for the electron beam test platform of S3FEL

doi: 10.11884/HPLPB202537.240365
  • Received Date: 2024-10-18
  • Accepted Date: 2025-01-13
  • Rev Recd Date: 2025-01-13
  • Available Online: 2025-02-12
  • Publish Date: 2025-03-31
  • The electron beam test platform, as a pre-research project for Shenzhen Superconducting Soft X-ray Free Electron Laser (S3FEL), will be used to overcome several major key technology challenges in high repetition frequency free electron laser. In this paper, the structural design of the injector dump beam window for the Electron Beam Test Platform of S3FEL is carried out, and a brazing water-cooled copper window is designed based on the electron beam parameters. The thermal structural calculation of the beam window is carried out using finite element analysis method, and the temperature, stress and deformation under different cooling channels and cooling water flow rates are analyzed. Considering the cooling effect, economic efficiency and flow vibration factors, the M-type cooling channel with the flow rate of 1 m/s is finally selected for the beam window. In addition, the vacuum distribution at the beam window is calculated, and all the results meet the design requirements, verifying the rationality of the design and ensuring the stable and reliable operation of the facility.
  • loading
  • [1]
    Decking W, Abeghyan S, Abramian P, et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator[J]. Nature Photonics, 2020, 14(6): 391-397. doi: 10.1038/s41566-020-0607-z
    [2]
    Pandey S, Bean R, Sato T, et al. Time-resolved serial femtosecond crystallography at the European XFEL[J]. Nature Methods, 2020, 17(1): 73-78. doi: 10.1038/s41592-019-0628-z
    [3]
    Halavanau A, Decker F J, Emma C, et al. Very high brightness and power LCLS-II hard X-ray pulses[J]. Journal of Synchrotron Radiation, 2019, 26(3): 635-646. doi: 10.1107/S1600577519002492
    [4]
    Zhang Baichao, Li Xiaoshen, Liu Qi, et al. High repetition-rate photoinjector laser system for S3FEL[J]. Frontiers in Physics, 2023, 11: 1181862. doi: 10.3389/fphy.2023.1181862
    [5]
    Xu Zhongmin, Zhang Weiqing, Yang Chuan, et al. Shape optimization design of the offset mirror in FEL-1 beamline at S3FEL[J]. Scientific Reports, 2023, 13: 9653. doi: 10.1038/s41598-023-36645-9
    [6]
    Huang Liming, E Dejun, Tao Kai, et al. Simulation study of coupled particle cascade and finite element analysis for beam dump of DALS[J]. Radiation Detection Technology and Methods, 2024, 8(2): 1254-1263. doi: 10.1007/s41605-023-00444-7
    [7]
    张浩, 黄礼明, 赵峰, 等. 一种高重频废束桶束窗的设计及热结构分析[J]. 强激光与粒子束, 2023, 35:034001 doi: 10.11884/HPLPB202335.220350

    Zhang Hao, Huang Liming, Zhao Feng, et al. Design and thermal structure analysis of a dump beam window for high repetition frequency[J]. High Power Laser and Particle Beams, 2023, 35: 034001 doi: 10.11884/HPLPB202335.220350
    [8]
    马文静, 赵壮, 王思慧, 等. 合肥先进光源前端光子吸收器的设计及热分析[J]. 强激光与粒子束, 2022, 34:104007 doi: 10.11884/HPLPB202234.220057

    Ma Wenjing, Zhao Zhuang, Wang Sihui, et al. Design and thermal analysis of front-end photon absorber at HALF[J]. High Power Laser and Particle Beams, 2022, 34: 104007 doi: 10.11884/HPLPB202234.220057
    [9]
    李勇军. 上海光源高热负载前端区的系统设计与研究[D]. 上海: 中国科学院上海应用物理研究所, 2016

    Li Yongjun. Design and study of high heat load front-end at SSRF[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2016
    [10]
    陈丽萍. 上海光源储存环光子吸收器结构设计与研制[J]. 真空科学与技术学报, 2009, 29(5):546-551 doi: 10.3969/j.issn.1672-7126.2009.05.18

    Chen Liping. Photon absorber development for storage ring of Shanghai synchrotron radiation facility[J]. Chinese Journal of Vacuum Science and Technology, 2009, 29(5): 546-551 doi: 10.3969/j.issn.1672-7126.2009.05.18
    [11]
    聂小军, 刘磊, 康玲, 等. 一种废束站束窗结构设计与优化[J]. 强激光与粒子束, 2018, 30:105105 doi: 10.11884/HPLPB201830.180057

    Nie Xiaojun, Liu Lei, Kang Ling, et al. Structure design and optimization of a dump beam window[J]. High Power Laser and Particle Beams, 2018, 30: 105105 doi: 10.11884/HPLPB201830.180057
    [12]
    Poo-arporn Y, Duangnil S, Bamrungkoh D, et al. Gas tungsten arc welding of copper to stainless steel for ultra-high vacuum applications[J]. Journal of Materials Processing Technology, 2020, 277: 116490. doi: 10.1016/j.jmatprotec.2019.116490
    [13]
    Böhlen T T, Cerutti F, Chin M P W, et al. The FLUKA code: developments and challenges for high energy and medical applications[J]. Nuclear Data Sheets, 2014, 120: 211-214. doi: 10.1016/j.nds.2014.07.049
    [14]
    马忠剑, 随艳峰, 王庆斌, 等. FLUKA程序在法拉第杯设计中的应用[J]. 强激光与粒子束, 2013, 25(1):207-210 doi: 10.3788/HPLPB20132501.0207

    Ma Zhongjian, Sui Yanfeng, Wang Qingbin, et al. Application of Monte Carlo code FLUKA to design of Faraday cup[J]. High Power Laser and Particle Beams, 2013, 25(1): 207-210 doi: 10.3788/HPLPB20132501.0207
    [15]
    翟红雨, 程健, 陈银华, 等. 离子能量分析器测量特性的仿真研究[J]. 强激光与粒子束, 2020, 32:084002 doi: 10.11884/HPLPB202032.190459

    Zhai Hongyu, Cheng Jian, Chen Yinhua, et al. Simulation study on measurement characteristics of ion energy analyzer[J]. High Power Laser and Particle Beams, 2020, 32: 084002 doi: 10.11884/HPLPB202032.190459
    [16]
    卢鹏, 潘艳秋, 俞路, 等. 固体激光微通道冷却器内流动特性的数值模拟[J]. 强激光与粒子束, 2014, 26:051008 doi: 10.11884/HPLPB201426.051008

    Lu Peng, Pan Yanqiu, Yu Lu, et al. Numerical simulation of flow characteristic in solid-state laser microchannel cooler[J]. High Power Laser and Particle Beams, 2014, 26: 051008 doi: 10.11884/HPLPB201426.051008
    [17]
    Chai Shuo, Zhu Wanqian, Zhang Zhanfei, et al. Research and optimization of flow-induced vibrations in a water-cooled monochromator[J]. Review of Scientific Instruments, 2024, 95: 035124. doi: 10.1063/5.0191196
    [18]
    Notari L, Pasquali M, Carra F, et al. Materials adopted for particle beam windows in relevant experimental facilities[J]. Physical Review Accelerators and Beams, 2024, 27: 024801. doi: 10.1103/PhysRevAccelBeams.27.024801
    [19]
    Malyshev O B. Vacuum in particle accelerators: modelling, design and operation of beam vacuum systems[M]. Weinheim: Wiley-VCH, 2019.
    [20]
    王姣龙, 王国栋, 刘霄, 等. NEG泵抽气性能仿真模拟与测试系统设计[J]. 真空科学与技术学报, 2024, 44(2):139-145

    Wang Jiaolong, Wang Guodong, Liu Xiao, et al. Simulation and design of test system for the pumping performance of NEG pump[J]. Chinese Journal of Vacuum Science and Technology, 2024, 44(2): 139-145
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article views (115) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return