Citation: | Zhang Tianlong, Geng Yuanchao, Liao Yuzhen, et al. A review of multispectral target detection algorithms and related datasets[J]. High Power Laser and Particle Beams, 2025, 37: 051001. doi: 10.11884/HPLPB202537.240370 |
[1] |
Voulodimos A, Doulamis N, Doulamis A, et al. Deep learning for computer vision: a brief review[J]. Computational Intelligence and Neuroscience, 2018, 2018: 7068349.
|
[2] |
Li Ke, Wan Gang, Cheng Gong, et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307. doi: 10.1016/j.isprsjprs.2019.11.023
|
[3] |
Himeur Y, Rimal B, Tiwary A, et al. Using artificial intelligence and data fusion for environmental monitoring: a review and future perspectives[J]. Information Fusion, 2022, 86/87: 44-75. doi: 10.1016/j.inffus.2022.06.003
|
[4] |
Janakiramaiah B, Kalyani G, Karuna A, et al. Retracted article: military object detection in defense using multi-level capsule networks[J]. Soft Computing, 2023, 27(2): 1045-1059. doi: 10.1007/s00500-021-05912-0
|
[5] |
Ren Shaoqing, He Kaiming, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
|
[6] |
Feng Di, Haase-Schütz C, Rosenbaum L, et al. Deep multi-modal object detection and semantic segmentation for autonomous driving: datasets, methods, and challenges[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1341-1360. doi: 10.1109/TITS.2020.2972974
|
[7] |
Sun Wei, Dai Liang, Zhang Xiaorui, et al. RSOD: real-time small object detection algorithm in UAV-based traffic monitoring[J]. Applied Intelligence, 2022, 52(8): 8448-8463. doi: 10.1007/s10489-021-02893-3
|
[8] |
Ghasemi Y, Jeong H, Choi S H, et al. Deep learning-based object detection in augmented reality: a systematic review[J]. Computers in Industry, 2022, 139: 103661. doi: 10.1016/j.compind.2022.103661
|
[9] |
Li Yongjun, Li Shasha, Du Haohao, et al. YOLO-ACN: focusing on small target and occluded object detection[J]. IEEE Access, 2020, 8: 227288-227303. doi: 10.1109/ACCESS.2020.3046515
|
[10] |
Li Haoyuan, Hu Qi, Yao You, et al. CFMW: cross-modality fusion mamba for multispectral object detection under adverse weather conditions[DB/OL]. arXiv preprint arXiv: 2404.16302, 2024.
|
[11] |
Guan Dayan, Cao Yanpeng, Yang Jiangxin, et al. Fusion of multispectral data through illumination-aware deep neural networks for pedestrian detection[J]. Information Fusion, 2019, 50: 148-157. doi: 10.1016/j.inffus.2018.11.017
|
[12] |
Li Chengyang, Song Dan, Tong Ruofeng, et al. Illumination-aware faster R-CNN for robust multispectral pedestrian detection[J]. Pattern Recognition, 2019, 85: 161-171. doi: 10.1016/j.patcog.2018.08.005
|
[13] |
Zhou Kailai, Chen Linsen, Cao Xun. Improving multispectral pedestrian detection by addressing modality imbalance problems[C]//Proceedings of the 16th European Conference on Computer Vision. 2020: 787-803.
|
[14] |
Liu Ye, Meng Shiyang, Wang Hongzhang, et al. Deep learning based object detection from multi-modal sensors: an overview[J]. Multimedia Tools and Applications, 2024, 83(7): 19841-19870.
|
[15] |
FLIR Thermal Dataset[DB/OL]. [2023]. https://www.flir.com/oem/adas/adas-dataset-form/.
|
[16] |
Jia Xinyu, Zhu Chuang, Li Minzhen, et al. LLVIP: a visible-infrared paired dataset for low-light vision[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision Workshops. 2021: 3489-3497.
|
[17] |
Paolo Gamba. Pavia Centra[DB/OL]. [2010]. http://tlclab.unipv.it/.
|
[18] |
Pursue’s university MultiSpecsite[DB/OL]. [1992]. https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html.
|
[19] |
Zhang Jiaqing, Lei Jie, Xie Weiying, et al. SuperYOLO: super resolution assisted object detection in multimodal remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5605415.
|
[20] |
Razakarivony S, Jurie F. Vehicle detection in aerial imagery: a small target detection benchmark[J]. Journal of Visual Communication and Image Representation, 2016, 34: 187-203.
|
[21] |
Hwang S, Park J, Kim N, et al. Multispectral pedestrian detection: benchmark dataset and baseline[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015: 1037-1045.
|
[22] |
Liu Jingjing, Zhang Shaoting, Wang Shu, et al. Multispectral deep neural networks for pedestrian detection[C]//Proceedings of British Machine Vision Conference 2016. 2016.
|
[23] |
Li Chengyang, Song Dan, Tong Ruofeng, et al. Multispectral pedestrian detection via simultaneous detection and segmentation[C]//Proceedings of British Machine Vision Conference 2018. 2018.
|
[24] |
徐力智. 航空摆扫式成像光谱仪成像质量研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2020: 2
Xu Lizhi. Research on imaging quality for airborne sweeping hyperspectral imager[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2020: 2
|
[25] |
于磊. 成像光谱仪的发展与应用(特邀)[J]. 红外与激光工程, 2022, 51:20210940
Yu Lei. Development and application of imaging spectrometer (Invited)[J]. Infrared and Laser Engineering, 2022, 51: 20210940
|
[26] |
李月, 杨灿坤, 周春平, 等. 无人机载高光谱成像设备研究及应用进展[J]. 测绘通报, 2019(9):1-6,17
Li Yue, Yang Cankun, Zhou Chunping, et al. Advance and application of UAV hyperspectral imaging equipment[J]. Bulletin of Surveying and Mapping, 2019(9): 1-6,17
|
[27] |
Saline[DB/OL]. [2001]. https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes.
|
[28] |
Green R O, Eastwood M L, Sarture C M, et al. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)[J]. Remote Sensing of Environment, 1998, 65(3): 227-248. doi: 10.1016/S0034-4257(98)00064-9
|
[29] |
Helber P, Bischke B, Dengel A, et al. EuroSAT: a novel dataset and deep learning benchmark for land use and land cover classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(7): 2217-2226. doi: 10.1109/JSTARS.2019.2918242
|
[30] |
Martimort P, Fernandez V, Kirschner V, et al. Sentinel-2 MultiSpectral imager (MSI) and calibration/validation[C]//Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium. 2012: 6999-7002.
|
[31] |
陈宇鹏. 快照红外傅里叶变换成像光谱仪理论、设计及实验研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2022: 3
Chen Yupeng. Theory, design and experiment of snapshot infrared Fourier transform imaging spectrometer[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2022: 3
|
[32] |
Lin C H, Huang S H, Lin T H, et al. Metasurface-empowered snapshot hyperspectral imaging with convex/deep (CODE) small-data learning theory[J]. Nature Communications, 2023, 14: 6979. doi: 10.1038/s41467-023-42381-5
|
[33] |
Miao Xin, Yuan Xin, Pu Yunchen, et al. Lambda-Net: reconstruct hyperspectral images from a snapshot measurement[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. 2019: 4058-4068.
|
[34] |
Yorimoto K, Han Xianhua. HyperMixNet: hyperspectral image reconstruction with deep mixed network from a snapshot measurement[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. 2021: 1184-1193.
|
[35] |
Cao Xun, Yue Tao, Lin Xing, et al. Computational snapshot multispectral cameras: toward dynamic capture of the spectral world[J]. IEEE Signal Processing Magazine, 2016, 33(5): 95-108. doi: 10.1109/MSP.2016.2582378
|
[36] |
Lucieer A, Malenovský Z, Veness T, et al. HyperUAS—imaging spectroscopy from a multirotor unmanned aircraft system[J]. Journal of Field Robotics, 2014, 31(4): 571-590. doi: 10.1002/rob.21508
|
[37] |
Hruska R, Mitchell J, Anderson M, et al. Radiometric and geometric analysis of hyperspectral imagery acquired from an unmanned aerial vehicle[J]. Remote Sensing, 2012, 4(9): 2736-2752. doi: 10.3390/rs4092736
|
[38] |
Bernath P F. Spectra of atoms and molecules[M]. 4th ed. Oxford: Oxford University Press, 2020.
|
[39] |
Adão T, Hruška J, Pádua L, et al. Hyperspectral imaging: a review on UAV-based sensors, data processing and applications for agriculture and forestry[J]. Remote Sensing, 2017, 9: 1110. doi: 10.3390/rs9111110
|
[40] |
Yadav A K, Roy R, Kumar R, et al. Algorithm for de-noising of color images based on median filter[C]//Proceedings of the 2015 3rd International Conference on Image Information Processing. 2015: 428-432.
|
[41] |
Peng Honghong, Rao R, Dianat S A. Multispectral image denoising with optimized vector bilateral filter[J]. IEEE Transactions on Image Processing, 2014, 23(1): 264-273. doi: 10.1109/TIP.2013.2287612
|
[42] |
Ojha U, Garg A. Denoising high resolution multispectral images using deep learning approach[C]//Proceedings of the 2016 15th IEEE International Conference on Machine Learning and Applications. 2016: 871-875.
|
[43] |
Dai Xiaoai, He Xuwei, Guo Shouheng, et al. Research on hyper-spectral remote sensing image classification by applying stacked de-noising auto-encoders neural network[J]. Multimedia Tools and Applications, 2021, 80(14): 21219-21239. doi: 10.1007/s11042-021-10735-0
|
[44] |
Lin T Y, Maire M, Belongie S, et al. Microsoft coco: common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision. 2014: 740-755.
|
[45] |
Andriluka M, Pishchulin L, Gehler P, et al. 2D human pose estimation: new benchmark and state of the art analysis[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014: 3686-3693.
|
[46] |
Everingham M, Eslami S M A, Van Gool L, et al. The PASCAL visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111(1/3): 98-136.
|
[47] |
Chen Xinlei, Fang Hao, Lin T Y, et al. Microsoft COCO captions: data collection and evaluation server[DB/OL]. arXiv preprint arXiv: 1504.00325, 2015.
|
[48] |
Wu Fan. AutoLabelImg[EB/OL]. [2020]. https://github.com/wufan-tb/AutoLabelImg.
|
[49] |
Zhou Xingyi, Koltun V, Krähenbühl P. Tracking objects as points[C]//Proceedings of the 16th European Conference on Computer Vision. 2020: 474-490.
|
[50] |
Liu Li, Ouyang Wanli, Wang Xiaogang, et al. Deep learning for generic object detection: a survey[J]. International Journal of Computer Vision, 2020, 128(2): 261-318. doi: 10.1007/s11263-019-01247-4
|
[51] |
Li Ruihuang, He Chenhang, Zhang Yabin, et al. SIM: semantic-aware instance mask generation for box-supervised instance segmentation[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 7193-7203.
|
[52] |
陈丽, 李临寒, 王世勇, 等. MMShip: 中分辨率多光谱卫星图像船舶数据集[J]. 光学 精密工程, 2023, 31(13):1962-1972
Chen Li, Li Linhan, Wang Shiyong, et al. MMShip: medium resolution multispectral satellite imagery ship dataset[J]. Optics and Precision Engineering, 2023, 31(13): 1962-1972
|
[53] |
Chen Zizhao, Qian Yeqiang, Yang Xiaoxiao, et al. AMFD: distillation via adaptive multimodal fusion for multispectral pedestrian detection[DB/OL]. arXiv preprint arXiv: 2405.12944, 2024.
|
[54] |
Salomonson V V, Barnes W L, Maymon P W, et al. MODIS: advanced facility instrument for studies of the Earth as a system[J]. IEEE Transactions on Geoscience and Remote Sensing, 1989, 27(2): 145-153. doi: 10.1109/36.20292
|
[55] |
闫赟彬, 崔博伦, 杨婷婷, 等. 基于轻型平台的多模态高分辨率高光谱目标检测系统[J]. 红外技术, 2023, 45(6):582-591
Yan Yunbin, Cui Bolun, Yang Tingting, et al. Multi-modal high-resolution hyperspectral object detection system based on lightweight platform[J]. Infrared Technology, 2023, 45(6): 582-591
|
[56] |
Jia Jianxin, Wang Yueming, Zheng Xiaorou, et al. Design, performance, and applications of AMMIS: a novel airborne multimodular imaging spectrometer for high-resolution earth observations[J]. Engineering, doi: 10.1016/j.eng.2024.11.001.
|
[57] |
万源庆, 刘威骏, 林若雨, 等. 基于超构表面的光谱成像及应用研究进展[J]. 光电工程, 2023, 50:230139
Wan Yuanqing, Liu Weijun, Lin Ruoyu, et al. Research progress and applications of spectral imaging based on metasurfaces[J]. Opto-Electronic Engineering, 2023, 50: 230139
|
[58] |
薛庆生, 白皓轩, 鲁凤芹, 等. 基于微透镜阵列的快照式高光谱成像仪研制[J]. 光子学报, 2023, 52:0552223 doi: 10.3788/gzxb20235205.0552223
Xue Qingsheng, Bai Haoxuan, Lu Fengqin, et al. Development of snapshot hyperspectral imager based on microlens array[J]. Acta Photonica Sinica, 2023, 52: 0552223 doi: 10.3788/gzxb20235205.0552223
|
[59] |
王俊佟, 杨华东. 基于高光谱解混的伪装目标识别技术研究[J]. 半导体光电, 2024, 45(2):261-268
Wang Juntong, Yang Huadong. Camouflaged target recognition technology based on hyperspectral unmixing[J]. Semiconductor Optoelectronics, 2024, 45(2): 261-268
|
[60] |
Zou Zhengxia, Chen Keyan, Shi Zhenwei, et al. Object detection in 20 years: a survey[J]. Proceedings of the IEEE, 2023, 111(3): 257-276. doi: 10.1109/JPROC.2023.3238524
|
[61] |
Lowe D G. Object recognition from local scale-invariant features[C]//Proceedings of the 7th IEEE International Conference on Computer Vision. 1999: 1150-1157.
|
[62] |
Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. doi: 10.1023/B:VISI.0000029664.99615.94
|
[63] |
Bay H, Tuytelaars T, Van Gool L. SURF: speeded up robust features[C]//Proceedings of the 9th European Conference on Computer Vision. 2006: 404-417.
|
[64] |
Song Yanyan, Lu Ying. Decision tree methods: applications for classification and prediction[J]. Shanghai Archives of Psychiatry, 2015, 27(2): 130-135.
|
[65] |
Jijo B T, Abdulazeez A M. Classification based on decision tree algorithm for machine learning[J]. Journal of Applied Science and Technology Trends, 2021, 2(1): 20-28. doi: 10.38094/jastt20165
|
[66] |
Abdullah D M, Abdulazeez A M. Machine learning applications based on SVM classification: a review[J]. Qubahan Academic Journal, 2021, 1(2): 81-90. doi: 10.48161/qaj.v1n2a50
|
[67] |
Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2001: I.
|
[68] |
Viola P, Jones M J. Robust real-time face detection[J]. International Journal of Computer Vision, 2004, 57(2): 137-154. doi: 10.1023/B:VISI.0000013087.49260.fb
|
[69] |
Papageorgiou C P, Oren M, Poggio T. A general framework for object detection[C]//Proceedings of the Sixth International Conference on Computer Vision. 1998: 555-562.
|
[70] |
Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005: 886-893.
|
[71] |
Felzenszwalb P, McAllester D, Ramanan D. A discriminatively trained, multiscale, deformable part model[C]//Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition. 2008: 1-8.
|
[72] |
Zhang Tianwen, Zhang Xiaoling, Ke Xiao, et al. HOG-ShipCLSNet: a novel deep learning network with hog feature fusion for SAR ship classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5210322.
|
[73] |
Tang Zetian, Zhang Zemin, Chen Wei, et al. An SIFT-based fast image alignment algorithm for high-resolution image[J]. IEEE Access, 2023, 11: 42012-42041. doi: 10.1109/ACCESS.2023.3270911
|
[74] |
Paszke A, Gross S, Massa F, et al. PyTorch: an imperative style, high-performance deep learning library[C]//Proceedings of the 33rd Conference on Neural Information Processing Systems. 2019: 32.
|
[75] |
Abadi M, Agarwal A, Barham P, et al. TensorFlow: large-scale machine learning on heterogeneous distributed systems[DB/OL]. arXiv preprint arXiv: 1603.04467, 2016.
|
[76] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. 2012: 1097-1105.
|
[77] |
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014: 580-587.
|
[78] |
Uijlings J R R, Van De Sande K E A, Gevers T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154-171. doi: 10.1007/s11263-013-0620-5
|
[79] |
He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. doi: 10.1109/TPAMI.2015.2389824
|
[80] |
Girshick R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. 2015: 1440-1448.
|
[81] |
Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017: 936-944.
|
[82] |
Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016: 779-788.
|
[83] |
Liu Wei, Anguelov D, Erhan D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. 2016: 21-37.
|
[84] |
Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. 2017: 2999-3007.
|
[85] |
Law H, Deng Jia. CornerNet: detecting objects as paired keypoints[C]//Proceedings of the 15th European Conference on Computer Vision. 2018: 765-781.
|
[86] |
Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference on Computer Vision. 2020: 213-229.
|
[87] |
Zhu Xizhou, Su Weijie, Lu Lewei, et al. Deformable DETR: deformable transformers for end-to-end object detection[C]//Proceedings of the 9th International Conference on Learning Representations. 2021.
|
[88] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017: 6000-6010.
|
[89] |
Han Dongchen, Pan Xuran, Han Yizeng, et al. Flatten transformer: vision transformer using focused linear attention[C]//Proceedings of 2023 IEEE/CVF International Conference on Computer Vision. 2023: 5938-5948.
|
[90] |
Yao Ting, Li Yehao, Pan Yingwei, et al. Dual vision transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(9): 10870-10882. doi: 10.1109/TPAMI.2023.3268446
|
[91] |
Gu A, Dao T. Mamba: linear-time sequence modeling with selective state spaces[DB/OL]. arXiv preprint arXiv: 2312.00752, 2024.
|
[92] |
Zhu Lianghui, Liao Bencheng, Zhang Qian, et al. Vision mamba: efficient visual representation learning with bidirectional state space model[C]//Proceedings of the 41st International Conference on Machine Learning. 2024.
|
[93] |
He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
|
[94] |
González A, Fang Zhijie, Socarras Y, et al. Pedestrian detection at day/night time with visible and FIR cameras: a comparison[J]. Sensors, 2016, 16: 820. doi: 10.3390/s16060820
|
[95] |
Fang Qingyun, Han Dapeng, Wang Zhaokui. Cross-modality fusion transformer for multispectral object detection[DB/OL]. arXiv preprint arXiv: 2111.00273, 2022.
|
[96] |
Redmon J, Farhadi A. YOLOv3: an incremental improvement[DB/OL]. arXiv preprint arXiv: 1804.02767, 2018.
|
[97] |
Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. 2020: 574.
|
[98] |
Rombach R, Blattmann A, Lorenz D, et al. High-resolution image synthesis with latent diffusion models[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 10674-10685.
|
[99] |
Zhao Tianyi, Yuan Maoxun, Jiang Feng, et al. Removal and selection: improving RGB-infrared object detection via coarse-to-fine fusion[DB/OL]. arXiv preprint arXiv: 2401.10731, 2024.
|
[100] |
Jacobs R A, Jordan M I, Nowlan S J, et al. Adaptive mixtures of local experts[J]. Neural Computation, 1991, 3(1): 79-87. doi: 10.1162/neco.1991.3.1.79
|
[101] |
Shazeer N, Mirhoseini A, Maziarz K, et al. Outrageously large neural networks: the sparsely-gated mixture-of-experts layer[C]//Proceedings of the 5th International Conference on Learning Representations. 2017.
|
[102] |
Sohl-Dickstein J, Weiss E A, Maheswaranathan N, et al. Deep unsupervised learning using nonequilibrium thermodynamics[C]//Proceedings of the 32nd International Conference on Machine Learning. 2015: 2256-2265.
|
[103] |
Ono S. Snapshot multispectral imaging using a pixel-wise polarization color image sensor[J]. Optics Express, 2020, 28(23): 34536-34573. doi: 10.1364/OE.402947
|
[104] |
Hubold M, Montag E, Berlich R, et al. Multi-aperture system approach for snapshot multispectral imaging applications[J]. Optics Express, 2021, 29(5): 7361-7378. doi: 10.1364/OE.412655
|
[105] |
Mengu D, Tabassum A, Jarrahi M, et al. Snapshot multispectral imaging using a diffractive optical network[J]. Light: Science & Applications, 2023, 12: 86.
|
[106] |
Wang Xudong, Girdhar R, Yu S X, et al. Cut and learn for unsupervised object detection and instance segmentation[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 3124-3134.
|