Citation: | Xuan Shouzhi, Tian Shunqiang, Liu Xinzhong, et al. Detuning effect corrections using octupoles in diffraction-limited storage ring[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240387 |
[1] |
Tavares P F, Al-Dmour E, Andersson Å, et al. Commissioning and first-year operational results of the MAX IV 3 GeV ring[J]. Journal of Synchrotron Radiation, 2018, 25(5): 1291-1316. doi: 10.1107/S1600577518008111
|
[2] |
Jiao Yi, Xu Gang, Cui Xiaohao, et al. The HEPS project[J]. Journal of Synchrotron Radiation, 2018, 25(6): 1611-1618. doi: 10.1107/S1600577518012110
|
[3] |
Sun Yipeng, Borland M. Alternate lattice design for advanced photon source multi-bend achromat upgrade[C]//Proceedings of the 6th International Particle Accelerator Conference. 2015: 3-8.
|
[4] |
Tian Shunqiang, Hou Jie, Chen Guangling, et al. New chromaticity compensation approach and dynamic aperture increase in the SSRF storage ring[J]. Chinese Physics C, 2008, 32: 661664.
|
[5] |
Oide K, Koiso H. Dynamic aperture of electron storage rings with noninterleaved sextupoles[J]. Physical Review E, 1993, 47(3): 2010-2018. doi: 10.1103/PhysRevE.47.2010
|
[6] |
Chierchia L. Kolmogorov-Arnold-Moser (KAM) theory[M]//Meyers R A. Encyclopedia of Complexity and Systems Science. New York: Springer, 2009: 5064-5091.
|
[7] |
Bengtsson J. The sextupole scheme for the Swiss Light Source (SLS): an analytic approach[R]. Villigen: Paul Scherrer Institut (PSI), 1997: 97.
|
[8] |
Tian Shunqiang, Liu Guimin, Hou Jie, et al. Improved nonlinear optimization in the storage ring of the modern synchrotron radiation light source[J]. Chinese Physics C, 2009, 33(1): 65-73. doi: 10.1088/1674-1137/33/1/014
|
[9] |
Kim E S. Lattice design for a hybrid multi-bend achromat light source[J]. Nuclear Science and Techniques, 2020, 31: 68. doi: 10.1007/s41365-020-00774-x
|
[10] |
Chattopadhyay S. Some fundamental aspects of fluctuations and coherence in charged-particle beams in storage rings[J]. AIP Conference Proceedings, 1985, 127(1): 467-623.
|
[11] |
Tambasco C, Pieloni T, Barranco J, et al. Beam transfer function measurements used to probe the transverse Landau damping at the LHC[J]. Physical Review Special Topics-Accelerators and Beams, 2020, 23: 071002. doi: 10.1103/PhysRevAccelBeams.23.071002
|
[12] |
Gareyte J, Koutchouk J P, Ruggiero F. Landau damping dynamic aperture and octupole in LHC[R]. 1997.
|
[13] |
Plassard F, Hidaka Y, Li Yongjun, et al. Simultaneous compensation of phase and amplitude dependent geometrical resonances using octupoles[C]//Proceedings of the 12th International Particle Accelerator Conference. 2021.
|
[14] |
Plassard F, Wang Guimei, Shaftan T, et al. Simultaneous correction of high order geometrical driving terms with octupoles in synchrotron light sources[J]. Physical Review Special Topics-Accelerators and Beams, 2021, 24: 114801. doi: 10.1103/PhysRevAccelBeams.24.114801
|
[15] |
Yang Lingyun, Robin D, Sannibale F, et al. Global optimization of an accelerator lattice using multiobjective genetic algorithms[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 609(1): 50-57.
|
[16] |
Yang Lingyun, Li Yongjun, Guo Weiming, et al. Multiobjective optimization of dynamic aperture[J]. Physical Review Special Topics-Accelerators and Beams, 2011, 14: 054001. doi: 10.1103/PhysRevSTAB.14.054001
|
[17] |
Tian Shunqiang. A design strategy of achievable linear optics for a complex storage ring lattice[J]. Chinese Physics C, 2010, 34(7): 1009-1015. doi: 10.1088/1674-1137/34/7/015
|
[18] |
Kennedy J, Eberhart R. Particle swarm optimization[C]//Proceedings of the ICNN'95-International Conference on Neural Networks. 1995: 1942-1948.
|
[19] |
Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256-279. doi: 10.1109/TEVC.2004.826067
|
[20] |
Terebilo A. Accelerator toolbox for MATLAB[R]. Menlo Park, CA, USA: SLAC National Accelerator Laboratory, 2001.
|
[21] |
Borland M. A flexible SDDS-compliant code for accelerator simulation[C]//Proceedings of the 6th International Computational Accelerator Physics Conference. 2000.
|
[22] |
Liu Xinzhong, Tian Shunqiang, Wu Xu, et al. Intra-beam scattering and beam lifetime in a candidate lattice of the soft X-ray diffraction-limited storage ring for the upgraded SSRF[J]. Nuclear Science and Techniques, 2021, 32: 83. doi: 10.1007/s41365-021-00913-y
|
[23] |
Gong Yihao, Tian Shunqiang, Liu Xinzhong, et al. Highly coupled off-resonance lattice design in diffraction-limited light sources[J]. Nuclear Science and Techniques, 2024, 35: 163. doi: 10.1007/s41365-024-01511-4
|
[24] |
Raimondi P, Carmignani N, Carver L R, et al. Commissioning of the hybrid multibend achromat lattice at the European Synchrotron Radiation Facility[J]. Physical Review Special Topics-Accelerators and Beams, 2021, 24: 110701. doi: 10.1103/PhysRevAccelBeams.24.110701
|
[25] |
Jiao Yi, Duan Zhe, Guo Yuanyuan, et al. Progress in the design and related studies on the High Energy Photon Source[J]. Physics Procedia, 2016, 84: 40-46. doi: 10.1016/j.phpro.2016.11.008
|
[26] |
Fornek T E. Advanced photon source upgrade project final design report[R]. Argonne, IL, USA, Argonne National Laboratory, 2019.
|
[27] |
Tian Shunqiang, Liu Guimin, Li Haohu, et al. Nonlinear optimization of the modern synchrotron radiation storage ring based on frequency map analysis[J]. Chinese Physics C, 2009, 33(2): 127-134. doi: 10.1088/1674-1137/33/2/011
|
[28] |
Leemann S C, Streun A. Perspectives for future light source lattices incorporating yet uncommon magnets[J]. Physical Review Special Topics-Accelerators and Beams, 2011, 14: 030701. doi: 10.1103/PhysRevSTAB.14.030701
|
[29] |
Piwinski A. The touschek effect in strong focusing storage rings[DB/OL]. arXiv preprint arXiv: physics/9903034, 1999.
|
[30] |
Liu Xinzhong, Tian Shunqiang, Tan Liyuan, et al. Applications of vertical damping wigglers in an X-ray diffraction limited storage ring[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1056: 168653. doi: 10.1016/j.nima.2023.168653
|