Volume 37 Issue 5
Mar.  2025
Turn off MathJax
Article Contents
Chen Yaxin, Li Xiangqiang, Zhang Jianqiong, et al. Design of high power miniaturized stepped double semicircular waveguide mode-transducing antenna[J]. High Power Laser and Particle Beams, 2025, 37: 053001. doi: 10.11884/HPLPB202537.240391
Citation: Chen Yaxin, Li Xiangqiang, Zhang Jianqiong, et al. Design of high power miniaturized stepped double semicircular waveguide mode-transducing antenna[J]. High Power Laser and Particle Beams, 2025, 37: 053001. doi: 10.11884/HPLPB202537.240391

Design of high power miniaturized stepped double semicircular waveguide mode-transducing antenna

doi: 10.11884/HPLPB202537.240391
  • Received Date: 2024-11-12
  • Accepted Date: 2025-02-23
  • Rev Recd Date: 2025-02-23
  • Available Online: 2025-03-15
  • Publish Date: 2025-03-31
  • In the field of high-power microwave radiation, mode converter and horn antenna are commonly used technologies to achieve rotational axisymmetric mode-directed radiation, but the separate design of mode converter and horn antenna often results in a large axial and aperture size of the antenna. To meet the demand for miniaturization of antennas in actual application scenarios, a stepped double semicircular waveguides radiation antenna with mode control and radiation integration is proposed. The antenna is fed with a circular waveguide TM01 mode and divided into two 180° phase difference semicircular waveguides by a plate. Then, two asymmetric stepped semicircular waveguide radiation elements are connected to achieve microwave radiation. The power divider uses a gradually tapered circular waveguide for matching, and a large inner conductor is used to improve power capacity. The dual semicircular waveguide radiation elements use the mode matching method combined with the Particle Swarm Optimization algorithm for phase adjustment and mode control. By integrating mode control and radiation in a multi-region design, a more uniform co-phase electric field distribution is achieved at the radiation aperture, achieving directed radiation, thereby shortening the antenna length and reducing the aperture size. An antenna model with a center frequency of 2.85 GHz is optimized, with dimensions of 1.18λ×1.18λ×2.42λ. Simulation results show that the return loss of the antenna is greater than 15 dB in the 2.75−2.96 GHz band, the realized gain is greater than 15.5 dBi in the 2.71−3 GHz band, the realized gain at the center frequency is 16.14 dBi and the vacuum power capacity is 906 MW. Compared with the traditional mode converter and horn antenna technology route, the proposed antenna has the characteristics of high power capacity and miniaturization.
  • loading
  • [1]
    Li Guolin, Liu Qiang, Qiu Yongfeng, et al. A low standing-wave-ratio wideband mode-transducing antenna for high-power microwaves[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(7): 5182-5188. doi: 10.1109/TAP.2020.2981731
    [2]
    Vlasov S N, Orlova I M. Quasioptical transformer which transforms the waves in a waveguide having a circular cross section into a highly directional wave beam[J]. Radiophysics and Quantum Electronics, 1974, 17(1): 115-119. doi: 10.1007/BF01037072
    [3]
    袁成卫, 凌根深. Vlasov辐射器反射特性研究[J]. 强激光与粒子束, 2003, 15(2):172-175

    Yuan Chengwei, Ling Genshen. Reflective characteristics of bevel-cut Vlasov radiator[J]. High Power Laser and Particle Beams, 2003, 15(2): 172-175
    [4]
    Yadav S V, Chittora A. A high power circularly polarized antenna with Overmoded waveguide[C]//Proceedings of 2021 IEEE Indian Conference on Antennas and Propagation. 2021: 431-434.
    [5]
    Yadav S V, Chittora A. Circularly polarized high-power antenna with higher-order mode excitation[J]. International Journal of Microwave and Wireless Technologies, 2022, 14(4): 477-481. doi: 10.1017/S1759078721000611
    [6]
    袁成卫, 刘庆想, 钟辉煌. 新型高功率微波模式转换天线研究[J]. 电波科学学报, 2005, 20(6):716-719,724 doi: 10.3969/j.issn.1005-0388.2005.06.005

    Yuan Chengwei, Liu Qingxiang, Zhong Huihuang. Research on a new high-power microwave mode-transducing antenna[J]. Chinese Journal of Radio Science, 2005, 20(6): 716-719,724 doi: 10.3969/j.issn.1005-0388.2005.06.005
    [7]
    袁成卫, 刘庆想, 钟辉煌, 等. 一种新型圆极化高功率微波天线[J]. 微波学报, 2005, 21(6):43-46 doi: 10.3969/j.issn.1005-6122.2005.06.011

    Yuan Chengwei, Liu Qingxiang, Zhong Huihuang, et al. A novel circularly-polarized high-power microwave antenna[J]. Journal of Microwaves, 2005, 21(6): 43-46 doi: 10.3969/j.issn.1005-6122.2005.06.011
    [8]
    Yuan Chengwei, Fan Yuwei, Zhong Huihuang, et al. A novel mode-transducing antenna for high-power microwave application[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(10): 3022-3025. doi: 10.1109/TAP.2006.882199
    [9]
    Wang Keqiang, Zhang Zhiqiang, Li Hao, et al. Theoretical and experimental investigations on a 90° compact TM01-TE11 mode converter for RBWO[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(2): 1072-1077. doi: 10.1109/TMTT.2021.3122804
    [10]
    张玉文, 舒挺, 袁成卫. TM01-TE11弯形圆波导模式转换器的优化设计[J]. 强激光与粒子束, 2005, 17(4):591-594

    Zhang Yuwen, Shu Ting, Yuan Chengwei. Optimization design of bent circular waveguide TM01-TE11 mode converter[J]. High Power Laser and Particle Beams, 2005, 17(4): 591-594
    [11]
    Yuan Chengwei, Zhong Huihuang, Liu Qingxiang, et al. A novel TM01–TE11 circularly polarized (CP) mode converter[J]. IEEE Microwave and Wireless Components Letters, 2006, 16(8): 455-457. doi: 10.1109/LMWC.2006.879486
    [12]
    Li J W, Deng G J, Guo L T, et al. Polarization controllable TM01-TE11 mode converter for high power microwaves[J]. AIP Advances, 2018, 8: 055230. doi: 10.1063/1.5026962
    [13]
    张晨, 刘强, 杜广星, 等. 紧凑型高功率微波圆波导TM01-TE11模式转换器[C]//2021年全国天线年会论文集. 2021: 2123-2125

    Zhang Chen, Liu Qiang, Du Guangxing, et al. A compact high-power microwave circular waveguide TM01-TE11 mode converter[C]//Proceedings of the National Antenna Annual Meeting, 2021: 2123-2125
    [14]
    Chittora A, Singh S, Sharma A, et al. A tapered metallic baffle TM01 to TE11Y mode converter with TE11X mode transmission capability[J]. IEEE Microwave and Wireless Components Letters, 2015, 25(10): 633-635. doi: 10.1109/LMWC.2015.2463219
    [15]
    Ceccuzzi S. Modal techniques for microwave components in fusion engineering and for periodic structures applied to directive antennas[D]. Rome, Università degli studi Roma Tre, 2015: 138-143.
    [16]
    李浩, 钟哲夫. 运用模匹配法设计高功率高效率多模馈源[J]. 强激光与粒子束, 2005, 17(8):1243-1246

    Li Hao, Zhong Zhefu. Design of high power and high efficient multimode feed by MMT[J]. High Power Laser and Particle Beams, 2005, 17(8): 1243-1246
    [17]
    巩进杰. 模式匹配法及其在微波谐振腔中的应用[D]. 成都: 电子科技大学, 2018

    Gong Jinjie. Mode matching method and its application in microwave resonator[D]. Chengdu: University of Electronic Science and Technology of China, 2018
    [18]
    Zhang Keqian, Li Dejie. Electromagnetic theory for microwaves and optoelectronics[M]. Berlin, Heidelberg: Springer, 2008: 264-268.
    [19]
    张宇, 渠芳芳. 一种超宽带多模喇叭的设计[J]. 电波科学学报, 2019, 34(5):567-573

    Zhang Yu, Qu Fangfang. Design of a wide-band multi-mode horn[J]. Chinese Journal of Radio Science, 2019, 34(5): 567-573
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article views (75) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return