Turn off MathJax
Article Contents
Li Jingpeng, Wang Jue, Zhang Xuefeng, et al. Study on diffraction performance of SU-8 micron grating[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240392
Citation: Li Jingpeng, Wang Jue, Zhang Xuefeng, et al. Study on diffraction performance of SU-8 micron grating[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240392

Study on diffraction performance of SU-8 micron grating

doi: 10.11884/HPLPB202537.240392
  • Received Date: 2024-11-13
  • Accepted Date: 2025-03-13
  • Rev Recd Date: 2025-04-02
  • Available Online: 2025-04-27
  • The influence of grating height on the diffraction efficiency of SU-8 micron gratings was studied.The diffraction efficiency of gratings with heights of 6-8 μm, 12-16 μm, and 6-30 μm was simulated and analyzed using rigorous coupled wave theory. The simulation results show that when the grating height is 6 μm, the 0th order diffraction efficiency is the lowest and the 1st order diffraction efficiency is the highest; At 12 μm, the 0th order diffraction efficiency is the highest and the 1st order diffraction efficiency is the lowest. When the grating height continuously changes from 6-30 μm, the diffraction efficiency varies periodically. SU-8 thin films with different thicknesses were prepared, and 40 μm periodic gratings with different gate heights were fabricated using picosecond laser etching technology. The measurement results show that when the grating height of the 40 μm period grating is 6.83 μm, the -1st order diffraction efficiency is 28.4%, and the 0th order diffraction efficiency is about 14.7%; When the grating height is 13.45 μm , the 0th order diffraction efficiency is 31.46% and the 1st order diffraction efficiency is 12.35%. The magnitude of the 0th and 1st order diffraction efficiencies varies with the grating height period. Theoretical simulation and experimental exploration will provide important references for the preparation of SU-8 micron gratings and the improvement of first-order diffraction efficiency.
  • loading
  • [1]
    邓舒鹏, 李文萃, 黄文彬, 等. 基于全息聚合物分散液晶的有机二维光子晶体激光器的研究[J]. 物理学报, 2011, 60:086103 doi: 10.7498/aps.60.086103

    Deng Shupeng, Li Wencui, Huang Wenbin, et al. All-organic two-dimensional photonic crystal laser based on holographic polymer dispersed liquid crystals[J]. Acta Physica Sinica, 2011, 60: 086103 doi: 10.7498/aps.60.086103
    [2]
    Xia Q K, Wang D N. Optical fiber diffraction gratings[J]. IEEE Photonics Technology Letters, 2022, 34(3): 177-180. doi: 10.1109/LPT.2022.3145037
    [3]
    Rutkowska K A, Kozanecka-Szmigiel A. Design of tunable holographic liquid crystalline diffraction gratings[J]. Sensors (Basel, Switzerland), 2020, 20(23): 6789. doi: 10.3390/s20236789
    [4]
    鹿胜康, 唐波, 陈伟, 等. 基于SU—8光刻胶的微光学元件制备工艺研究[J]. 传感器与微系统, 2022, 41(11):22-26

    Lu Shengkang, Tang Bo, Chen Wei, et al. Research on fabrication process of micro-optical components based on SU-8 photoresist[J]. Transducer and Microsystem Technologies, 2022, 41(11): 22-26
    [5]
    余鑫. 基于SU8胶空气包层MMI型光分路器的仿真及飞秒激光制备研究[D]. 武汉: 湖北工业大学, 2021

    Yu Xin. Simulation and femtosecond laser fabrication of Air-clad MMI optical splitter based on SU8 photoresist[D]. Wuhan: Hubei University of Technology, 2021
    [6]
    杨秋杰, 何志平, 糜忠良. 太赫兹立体相位光栅衍射特性分析[J]. 中国光学, 2020, 13(3):605-615

    Yang Qiujie, He Zhiping, Mi Zhongliang. Diffraction characteristics analysis of multi-depth phase modulation grating in terahertz band[J]. Chinese Optics, 2020, 13(3): 605-615
    [7]
    Ban Yaowen, Zhao Guobo, Zhang Zhenghui, et al. Study on the influence of surface roughness on the diffraction efficiency of two-dimensional gratings[J]. Optics Express, 2023, 31(18): 28701-28715. doi: 10.1364/OE.494470
    [8]
    Meshalkin A Y, Podlipnov V V, Ustinov A V, et al. Analysis of diffraction efficiency of phase gratings in dependence of duty cycle and depth[J]. Journal of Physics: Conference Series., 2019, 1368: 022047. doi: 10.1088/1742-6596/1368/2/022047
    [9]
    王雅楠. 高深宽比熔融石英透射光栅[D]. 合肥: 中国科学技术大学, 2022

    Wang Yanan. Fused silica transmission gratings with high aspect ratio[D]. Hefei: University of Science and Technology of China, 2022
    [10]
    王琦琦. DBR光栅形貌的横模调控特性研究[D]. 长春: 长春理工大学, 2022

    Wang Qiqi. Study of transverse mode modulation characteristics of DBR grating morphology[D]. Changchun: Changchun University of Science and Technology, 2022
    [11]
    张泽全, 黄元申, 庄松林, 等. 亚波长光栅的衍射效率[J]. 仪器仪表学报, 2007, 28(4):667-672 doi: 10.3321/j.issn:0254-3087.2007.04.017

    Zhang Zequan, Huang Yuanshen, Zhuang Songlin, et al. Diffraction efficiency of sub-wavelength gratings[J]. Chinese Journal of Scientific Instrument, 2007, 28(4): 667-672 doi: 10.3321/j.issn:0254-3087.2007.04.017
    [12]
    王斌. 亚波长介质光栅设计简化模式法的修正及相关研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2014

    Wang Bin. Modification and research on simplified modal method for dielectric subwavelength gratings design[D]. Changchun: Graduate School of Chinese Academy of Sciences (Changchun Institute of Optics, Precision Mechanics and Physics), 2014
    [13]
    巴音贺希格. 衍射光栅色散理论与光栅设计、制作和检验方法研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2004

    BA Yanheshig. The study on the dispersion theory, design, manufacture, and efficiency test of diffraction gratings[D]. Changchun: Changchun Institute of Optics Fine Mechanics and Physics (CIOMP), The Chinese Academy of Sciences, 2004
    [14]
    朱媛媛. 基于严格耦合波分析(RCWA)方法的相位光栅衍射特性研究[D]. 北京: 中央民族大学, 2020

    Zhu Yuanyuan. Study of the diffraction properties of phase gratings based on rigorous coupled wave analysis (RCWA)[D]. Beijing: Minzu University of China, 2020
    [15]
    周常河, 张妍妍. 632.8纳米波长的高衍射效率石英透射光栅: CN1693930A. 2[P]. 2007-06-01

    Zhou Changhe, Zhang yanyan. High-Diffraction Efficiency Quartz Transmission Grating of 632.8 Nano Wavelength: CN1693930A[P]. 2005-11-09
    [16]
    刘麟跃. 基于透射光谱反演法的亚波长光栅槽形参数测量技术研究[D]. 苏州: 苏州大学, 2015

    Liu Linyue. Research on measuring groove profile parameters of subwavelength grating based on transmission spectrum retrieval method[D]. Suzhou: Suzhou University, 2015
    [17]
    王卫敏, 阮东升, 井绪峰. 正弦光栅标量衍射及等效介质理论有效性分析[J]. 光子学报, 2016, 45:0705001

    Wang Weimin, Ruan Dongsheng, Jing Xufeng. Analysis of accuracy of scalar diffraction theory and effective medium theory for sinusoidal grating[J]. Acta Photonica Sinica, 2016, 45: 0705001
    [18]
    郭小花, 张明霞. 多光束干涉的扩展研究[J]. 天水师范学院学报, 2016, 36(5):13-14 doi: 10.3969/j.issn.1671-1351.2016.05.004

    Guo Xiaohua, Zhang Mingxia. Extended study on multi beam interference[J]. Journal of Tianshui Normal University, 2016, 36(5): 13-14 doi: 10.3969/j.issn.1671-1351.2016.05.004
    [19]
    丁文革, 苑静, 李文博, 等. 基于反射和透射光谱的氢化非晶硅薄膜厚度及光学常量计算[J]. 光子学报, 2011, 40(7):1096-1099,1100 doi: 10.3788/gzxb20114007.1096

    Ding Wenge, Wan Jing, Li Wenbo, et al. Thickness and optical constants calculation of hydrogenated amorphous silicon film based on transmission and reflectance spectra[J]. Acta Photonica Sinica, 2011, 40(7): 1096-1099,1100 doi: 10.3788/gzxb20114007.1096
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (11) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return