Citation: | Li Chao, Shi Rui, Zeng Shuxin, et al. Lightweight neural network model for nuclide recognition based on nuclear pulse peak sequence and its FPGA acceleration method[J]. High Power Laser and Particle Beams, 2025, 37: 059001. doi: 10.11884/HPLPB202537.240398 |
[1] |
Likar A, Vidmar T. A peak-search method based on spectrum convolution[J]. Journal of Physics D: Applied Physics, 2003, 36(15): 1903-1909. doi: 10.1088/0022-3727/36/15/323
|
[2] |
Li Xiaozhe, Zhang Qingxian, Tan Heyi, et al. Fast nuclide identification based on a sequential Bayesian method[J]. Nuclear Science and Techniques, 2021, 32: 143. doi: 10.1007/s41365-021-00982-z
|
[3] |
Ling Yongsheng, Huang Tian, Yue Qi, et al. Improving the estimation accuracy of multi-nuclide source term estimation method for severe nuclear accidents using temporal convolutional network optimized by Bayesian optimization and hyperband[J]. Journal of Environmental Radioactivity, 2022, 242: 106787. doi: 10.1016/j.jenvrad.2021.106787
|
[4] |
张江梅, 任俊松, 李培培, 等. 基于支持向量机的复杂核素能谱识别[J]. 核电子学与探测技术, 2016, 36(8):856-861 doi: 10.3969/j.issn.0258-0934.2016.08.019
Zhang Jiangmei, Ren Junsong, Li Peipei, et al. Complex radioactive nuclide identification method based on support vector machine[J]. Nuclear Electronics & Detection Technology, 2016, 36(8): 856-861 doi: 10.3969/j.issn.0258-0934.2016.08.019
|
[5] |
El_Tokhy M S. Rapid and robust radioisotopes identification algorithms of X-Ray and gamma spectra[J]. Measurement, 2021, 168: 108456. doi: 10.1016/j.measurement.2020.108456
|
[6] |
问斯莹, 王百荣, 肖刚, 等. 基于序贯贝叶斯方法的核素识别算法研究[J]. 核电子学与探测技术, 2016, 36(2):179-183 doi: 10.3969/j.issn.0258-0934.2016.02.015
Wen Siying, Wang Bairong, Xiao Gang, et al. The study on nuclide identification algorithm based on sequential Bayesian analysis[J]. Nuclear Electronics & Detection Technology, 2016, 36(2): 179-183 doi: 10.3969/j.issn.0258-0934.2016.02.015
|
[7] |
Qi Sheng, Zhao Wei, Chen Ye, et al. Comparison of machine learning approaches for radioisotope identification using NaI (TI) gamma-ray spectrum[J]. Applied Radiation and Isotopes, 2022, 186: 110212. doi: 10.1016/j.apradiso.2022.110212
|
[8] |
胡浩行, 张江梅, 王坤朋, 等. 卷积神经网络在复杂核素识别中的应用[J]. 传感器与微系统, 2019, 38(10):154-156,160
Hu Haohang, Zhang Jiangmei, Wang Kunpeng, et al. Application of convolutional neural networks in identification of complex nuclides[J]. Transducer and Microsystem Technologies, 2019, 38(10): 154-156,160
|
[9] |
王瑶, 刘志明, 万亚平, 等. 基于长短时记忆神经网络的能谱核素识别方法[J]. 强激光与粒子束, 2020, 32:106001 doi: 10.11884/HPLPB202032.200118
Wang Yao, Liu Zhiming, Wan Yaping, et al. Energy spectrum nuclide recognition method based on long short-term memory neural network[J]. High Power Laser and Particle Beams, 2020, 32: 106001 doi: 10.11884/HPLPB202032.200118
|
[10] |
Turner A N, Wheldon C, Wheldon T K, et al. Convolutional neural networks for challenges in automated nuclide identification[J]. Sensors, 2021, 21: 5238. doi: 10.3390/s21155238
|
[11] |
Zhao Wei, Shi Rui, Tuo Xianguo, et al. Novel radionuclides identification method based on Hilbert–Huang Transform and Convolutional Neural Network with gamma-ray pulse signal[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1051: 168232. doi: 10.1016/j.nima.2023.168232
|
[12] |
张军阳, 王慧丽, 郭阳, 等. 深度学习相关研究综述[J]. 计算机应用研究, 2018, 35(7):1921-1928,1936
Zhang Junyang, Wang Huili, Guo Yang, et al. Review of deep learning[J]. Application Research of Computers, 2018, 35(7): 1921-1928,1936
|
[13] |
陈辰, 柴志雷, 夏珺. 基于Zynq7000 FPGA异构平台的YOLOv2加速器设计与实现[J]. 计算机科学与探索, 2019, 13(10):1677-1693
Chen Chen, Chai Zhilei, Xia Jun. Design and implementation of YOLOv2 accelerator based on Zynq7000 FPGA heterogeneous platform[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(10): 1677-1693
|
[14] |
He Dazhong, He Junhua, Liu Jun, et al. An FPGA-based LSTM acceleration engine for deep learning frameworks[J]. Electronics, 2021, 10: 681. doi: 10.3390/electronics10060681
|
[15] |
Pacini T, Rapuano E, Fanucci L. FPG-AI: a technology-independent framework for the automation of CNN deployment on FPGAs[J]. IEEE Access, 2023, 11: 32759-32775. doi: 10.1109/ACCESS.2023.3263392
|
[16] |
王博, 石睿, 刘敏俊, 等. 基于FPGA的卷积神经网络核素识别硬件加速方法研究[J]. 核电子学与探测技术, 2024, 44(2):334-343
Wang Bo, Shi Rui, Liu Minjun, et al. Hardware acceleration method of convolutional neural network nuclide identification algorithm based on FPGA[J]. Nuclear Electronics & Detection Technology, 2024, 44(2): 334-343
|
[17] |
陈亮. 核素识别算法及数字化能谱采集系统研究[D]. 北京: 清华大学, 2009
Chen Liang. Research on the nuclide identification algorithm and digital spectra acquisition system[D]. Beijing: Tsinghua University, 2009
|
[18] |
王军, 冯孙铖, 程勇. 深度学习的轻量化神经网络结构研究综述[J]. 计算机工程, 2021, 47(8):1-13
Wang Jun, Feng Suncheng, Cheng Yong. Survey of research on lightweight neural network structures for deep learning[J]. Computer Engineering, 2021, 47(8): 1-13
|
[19] |
Howard A G, Zhu Menglong, Chen Bo, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[DB/OL]. arXiv preprint arXiv: 1704.04861, 2017.
|
[20] |
Sandler M, Howard A, Zhu Menglong, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018: 4510-4520.
|