Turn off MathJax
Article Contents
Ma Tengfei, Zhang Jie, Zhang Wenyu, et al. Synchronous amplification of pulse power and proton acceleration technology based on hydrogen plasma loading[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240400
Citation: Ma Tengfei, Zhang Jie, Zhang Wenyu, et al. Synchronous amplification of pulse power and proton acceleration technology based on hydrogen plasma loading[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240400

Synchronous amplification of pulse power and proton acceleration technology based on hydrogen plasma loading

doi: 10.11884/HPLPB202537.240400
  • Received Date: 2024-11-28
  • Accepted Date: 2025-02-07
  • Rev Recd Date: 2025-03-06
  • Available Online: 2025-04-29
  • In order to effectively solve the problem of strong electromagnetic pulse power required to drive particle reactions, a new pulse power synchronous amplification technology based on hydrogen plasma loading and wave-particle resonance mechanism is studied on the basis of piezoelectric ceramic stack pulse source. The amplification mechanism is as follows: first, the energy of hydrogen molecule bonding orbitals is lower than that of antibonding orbitals, and internal energy will be released during the ionization process to promote the efficient occurrence of the ionization process driven by pulse power; Second, after the ionization of hydrogen atoms, the electromagnetic field and electrons undergo wave-particle resonance, and the electron energy is synchronously converted into electromagnetic field energy. After the amplification of wave-particle resonance, a stronger electromagnetic pulse is obtained, which can form a spherical electromagnetic field when applied to the spiral electrode, and has an extremely high acceleration gradient, which can accelerate a large number of protons produced after efficient ionization of hydrogen atoms. In this paper, the above theory is effectively proved through experimental tests and simulation analysis, and this research is expected to lay a foundation for a miniaturized and low-cost proton generator driven by strong electromagnetic pulses.
  • loading
  • [1]
    毕远杰. 强流回旋加速器中束流损失和辐射场研究[D]. 北京: 清华大学, 2011

    Bi Yuanjie. Study on beam losses and radiation fields in high intensity cyclotrons[D]. Beijing: Tsinghua University, 2011
    [2]
    余昌海, 秦志勇, 张志钧, 等. 激光尾波场电子加速及新型辐射源(特邀)[J]. 中国激光, 2024, 51:0101002 doi: 10.3788/CJL231403

    Yu Changhai, Qin Zhiyong, Zhang Zhijun, et al. Laser wakefield electron acceleration and novel radiation sources (Invited)[J]. Chinese Journal of Lasers, 2024, 51: 0101002 doi: 10.3788/CJL231403
    [3]
    罗辑. 基于激光等离子体尾波场的电子加速与辐射研究[D]. 上海: 上海交通大学, 2018

    Luo Ji. Electron acceleration and radiation based on laser plasma wakefield[D]. Shanghai: Shanghai Jiao Tong University, 2018
    [4]
    张国博. 激光等离子体作用中尾波场电子加速与辐射产生的理论研究[D]. 长沙: 国防科技大学, 2018

    Zhang Guobo. Theoretical studies on the electron acceleration in laser wakefield acceleration and the high frequency radiation in laser-plasma interaction[D]. Changsha: National University of Defense Technology, 2018
    [5]
    Borghesi M, Kar S, Romagnani L, et al. Impulsive electric fields driven by high-intensity laser matter interactions[J]. Laser and Particle Beams, 2007, 25(1): 161-167. doi: 10.1017/S0263034607070218
    [6]
    王鼎聪. 论振动体的电动力学(Ⅱ)——共振场的波粒二像性运动[J]. 石油化工高等学校学报, 2012, 25(2):29-37

    Wang Dingcong. On the electrodynamics of resonance bodies (II)——waveparticleduality on resonance field[J]. Journal of Petrochemical Universities, 2012, 25(2): 29-37
    [7]
    顾旭东. 地球辐射带高能电子与磁层等离子体波的波粒共振相互作用[D]. 武汉: 武汉大学, 2011

    Gu Xudong. Resonant interactions between energetic electrons and plasma waves in the earth’s radiation belts[D]. Wuhan: Wuhan University, 2011
    [8]
    王振林. 表面等离激元研究新进展[J]. 物理学进展, 2009, 29(3):287-324 doi: 10.3321/j.issn:1000-0542.2009.03.004

    Wang Zhenlin. A review on research progress in surface plasmons[J]. Progress in Physics, 2009, 29(3): 287-324 doi: 10.3321/j.issn:1000-0542.2009.03.004
    [9]
    Wood R W. A new form of cathode discharge and the production of X-rays, together with some notes on diffraction[J]. Physical Review, 1897, 5(1): 1-10.
    [10]
    Du A, Du H F. Monte Carlo calculation of the magnetization behavior and the magnetocaloric effect of interacting particles[J]. Journal of Magnetism and Magnetic Materials, 2006, 299(2): 247-254. doi: 10.1016/j.jmmm.2005.04.011
    [11]
    Harmin D A. Theory of the stark effect[J]. Physical Review, 1982, 26(5): 2656-2681.
    [12]
    Kondratovich V D, Ostrovsky V N. Resonance and interference phenomena in the photoionisation of a hydrogen atom in a uniform electric field. I. Resonances below and above the potential barrier[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 1984, 17(10): 1981-2010. doi: 10.1088/0022-3700/17/10/007
    [13]
    列别捷夫. 微波电子学[M]. 韩家瑞, 译. 北京: 国防工业出版社, 1982

    Lie Biejiefu. Microwave electronics[M]. Han Jiarui, trans. Beijing: Defense Industry Press, 1982
    [14]
    刘盛纲. 微波电子学导论[M]. 北京: 国防工业出版社, 1985

    Liu Shenggang. Introduction to microwave electronics[M]. Beijing: Defense Industry Press, 1985
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (9) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return