Turn off MathJax
Article Contents
Yuan Jun, Zhang Jie, Zhang Wenyu, et al. Nuclear reaction driven by near-field induced electrical explosion and its application in smart neutron source[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240401
Citation: Yuan Jun, Zhang Jie, Zhang Wenyu, et al. Nuclear reaction driven by near-field induced electrical explosion and its application in smart neutron source[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240401

Nuclear reaction driven by near-field induced electrical explosion and its application in smart neutron source

doi: 10.11884/HPLPB202537.240401
  • Received Date: 2024-11-18
  • Accepted Date: 2025-01-21
  • Rev Recd Date: 2025-03-10
  • Available Online: 2025-04-29
  • In this paper, the working principle, composition and configuration of a miniaturized high-throughput neutron source system are introduced. This paper systematically introduces the piezoelectric pulse power source technology, nuclear reaction design technology, spherical electromagnetic field generation technology, particle proximity acceleration technology, particle polarization and resonance collision technology required for the development of this neutron source system. A complete neutron source physical system was developed and tested for energy spectrum and flux. The expected physical phenomena were observed in the experiments, and the occurrence of nuclear reactions was proved by online and offline neutron measurement methods, and the test results showed that the neutron radiation flux of the new miniature neutron source with a diameter of 2 cm and a length of 4 cm reached the level of 1010 n/(cm2·s), which belongs to strong neutron radiation source.
  • loading
  • [1]
    Hahn S, Kim K, Kim K, et al. 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet[J]. Nature, 2019, 570(7762): 496-499. doi: 10.1038/s41586-019-1293-1
    [2]
    Lee W, Gheorghe A H, Tiurev K, et al. Synthetic electromagnetic knot in a three-dimensional skyrmion[J]. Science Advances, 2018, 4: eaao3820. doi: 10.1126/sciadv.aao3820
    [3]
    Macchi A, Borghesi M, Passoni M. Ion acceleration by superintense laser-plasma interaction[J]. Reviews of Modern Physics, 2013, 85(2): 751-793. doi: 10.1103/RevModPhys.85.751
    [4]
    Ferri J, Siminos E, Fülöp T. Enhanced target normal sheath acceleration using colliding laser pulses[J]. Communications Physics, 2019, 2: 40. doi: 10.1038/s42005-019-0140-x
    [5]
    Adolph C, Akhunzyanov R, Alexeev M G, et al. Spin alignment and violation of the OZI rule in exclusive ω and φ production in pp collisions[J]. Nuclear Physics B, 2014, 886: 1078-1101. doi: 10.1016/j.nuclphysb.2014.07.020
    [6]
    Kisamori K, Shimoura S, Miya H, et al. Candidate resonant tetraneutron state populated by the 4He(8He, 8Be) reaction[J]. Physical Review Letters, 2016, 116: 052501. doi: 10.1103/PhysRevLett.116.052501
    [7]
    刘翠, 姚向豫, 殷生华, 等. 小型氘-氘脉冲中子发生器优化设计[J]. 核电子学与探测技术, 2024, 44(5):897-901 doi: 10.3969/j.issn.0258-0934.2024.05.016

    Liu Cui, Yao Xiangyu, Yin Shenghua, et al. Optimization design of a small deuterium-deuterium pulse neutron generator[J]. Nuclear Electronics & Detection Techniques, 2024, 44(5): 897-901 doi: 10.3969/j.issn.0258-0934.2024.05.016
    [8]
    Kondratovich V D, Ostrovsky V N. Resonance and interference phenomena in the photoionisation of a hydrogen atom in a uniform electric field. II. Overlapping resonances and interference[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 1984, 17(10): 2011-2038. doi: 10.1088/0022-3700/17/10/008
    [9]
    Thiele I, Siminos E, Fülöp T. Electron beam driven generation of frequency-tunable isolated relativistic subcycle pulses[J]. Physical Review Letters, 2019, 122: 104803. doi: 10.1103/PhysRevLett.122.104803
    [10]
    袁军, 刘平安, 李小雷, 等. 基于磁荷模型的全极化质子对撞结果预测[J]. 凝聚态物理学进展, 2018, 7(2):76-83 doi: 10.12677/CMP.2018.72010

    Yuan Jun, Liu Ping’an, Li Xiaolei, et al. Prediction estimation on the results of totally polarized proton collisions based on magnetic charge model[J]. Advances in Condensed Matter Physics, 2018, 7(2): 76-83 doi: 10.12677/CMP.2018.72010
    [11]
    汲长松. 中子探测实验方法[M]. 北京: 原子能出版社, 1998

    Ji Changsong. Experimental methods for neutron detection[M]. Beijing: Atomic Energy Press, 1998
    [12]
    孙汉城, 杨春祥. 实验核物理[M]. 哈尔滨: 哈尔滨工程大学出版社, 2014

    Sun Hancheng, Yang Chunxiang. Experimental nuclear physics[M]. Harbin: Harbin Engineering University Press, 2014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article views (14) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return