Turn off MathJax
Article Contents
Li Gang, Yang Lei, Huang Zheng, et al. Parasitic effects in ultra-broadband degenerate optical parametric amplification[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240407
Citation: Li Gang, Yang Lei, Huang Zheng, et al. Parasitic effects in ultra-broadband degenerate optical parametric amplification[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240407

Parasitic effects in ultra-broadband degenerate optical parametric amplification

doi: 10.11884/HPLPB202537.240407
  • Received Date: 2024-11-27
  • Accepted Date: 2025-03-24
  • Rev Recd Date: 2025-04-06
  • Available Online: 2025-04-27
  • This paper conducts a detailed study on the influence of second-harmonic parasitic effects in non-collinear ultra-broadband degenerate optical parametric amplification (OPA), which is pumped by frequency-doubled Ti:sapphire lasers. We consider both walk-off compensation and non-walk-off compensation scenarios. The study reveals that, under the non-walk-off compensation method, by appropriately increasing the non-collinear angle between the pump and signal beams, the impact of second-harmonic parasitic effects on the signal's output spectrum can be effectively reduced while ensuring broad-spectrum amplification of the signal. The evolution of the signal's output spectrum and output flux is investigated for different pump spectral bandwidths, clarifying the requirements for the pump spectral bandwidth given a specific signal output spectral bandwidth. The research findings provide design guidelines for generating ultra-broadband, high-temporal contrast femtosecond seed based on degenerate OPA.
  • loading
  • [1]
    Ledingham K W D, Galster W. Laser-driven particle and photon beams and some applications[J]. New Journal of Physics, 2010, 12: 045005. doi: 10.1088/1367-2630/12/4/045005
    [2]
    仲佳勇, 安维明, 平永利, 等. 强激光实验室天体物理介绍[J]. 强激光与粒子束, 2020, 32:092003 doi: 10.11884/HPLPB202032.00123

    Zhong Jiayong, An Weiming, Ping Yongli, et al. Introduction of laboratory astrophysics with intense lasers[J]. High Power Laser and Particle Beams, 2020, 32: 092003 doi: 10.11884/HPLPB202032.00123
    [3]
    张高维, 矫金龙, 齐伟, 等. 拍瓦激光与铜靶作用产生光核中子的数值模拟研究[J]. 强激光与粒子束, 2016, 28:102002 doi: 10.11884/HPLPB201628.160102

    Zhang Gaowei, Jiao Jinlong, Qi Wei, et al. Numerical simulation study of photonuclear neutron generation by PW laser[J]. High Power Laser and Particle Beams, 2016, 28: 102002 doi: 10.11884/HPLPB201628.160102
    [4]
    Bagnoud V, Wagner F. Ultrahigh temporal contrast performance of the PHELIX petawatt facility[J]. High Power Laser Science and Engineering, 2016, 4: e39. doi: 10.1017/hpl.2016.38
    [5]
    Chvykov V, Rousseau P, Reed S, et al. Generation of 1011 contrast 50 TW laser pulses[J]. Optics Letters, 2006, 31(10): 1456-1458. doi: 10.1364/OL.31.001456
    [6]
    Itatani J, Faure J, Nantel M, et al. Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection[J]. Optics Communications, 1998, 148(1/3): 70-74.
    [7]
    Kalashnikov M P, Risse E, Schönnagel H, et al. Double chirped-pulse-amplification laser: a way to clean pulses temporally[J]. Optics Letters, 2005, 30(8): 923-925. doi: 10.1364/OL.30.000923
    [8]
    Shah R C, Johnson R P, Shimada T, et al. High-temporal contrast using low-gain optical parametric amplification[J]. Optics Letters, 2009, 34(15): 2273-2275. doi: 10.1364/OL.34.002273
    [9]
    Papadopoulos D N, Ramirez P, Genevrier K, et al. High-contrast 10 fs OPCPA-based front end for multi-PW laser chains[J]. Optics Letters, 2017, 42(18): 3530-3533. doi: 10.1364/OL.42.003530
    [10]
    Lureau F, Matras G, Chalus O, et al. High-energy hybrid femtosecond laser system demonstrating 2×10 PW capability[J]. High Power Laser Science and Engineering, 2020, 8: e43. doi: 10.1017/hpl.2020.41
    [11]
    Archipovaite G, Galletti M, Oliveira P, et al. 880 nm, 22 fs, 1 mJ pulses at 100 Hz as an OPCPA front end for Vulcan laser facility[J]. Optics Communications, 2020, 474: 126072. doi: 10.1016/j.optcom.2020.126072
    [12]
    Bromage J, Bahk S W, Begishev I A, et al. Technology development for ultraintense all-OPCPA systems[J]. High Power Laser Science and Engineering, 2019, 7: e4. doi: 10.1017/hpl.2018.64
    [13]
    Yoon J W, Lee S K, Yu T J, et al. Broadband, high gain two-stage optical parametric chirped pulse amplifier using BBO crystals for a femtosecond high-power Ti: sapphire laser system[J]. Current Applied Physics, 2012, 12(3): 648-653. doi: 10.1016/j.cap.2011.09.013
    [14]
    Limpert J, Aguergaray C, Montant S, et al. Ultra-broad bandwidth parametric amplification at degeneracy[J]. Optics Express, 2005, 13(19): 7386-7392. doi: 10.1364/OPEX.13.007386
    [15]
    Xiao Qi, Pan Xue, Jiang Youen, et al. High-contrast OPCPA front end in high-power petawatt laser facility based on the ps-OPCPA seed system[J]. Optics Express, 2021, 29(11): 15980-15994. doi: 10.1364/OE.425420
    [16]
    Klingebiel S. Picosecond pump dispersion management and jitter stabilization in a petawatt-scale few-cycle OPCPA system[D]. Munich: Ludwig-Maximilians-Universität München, 2013.
    [17]
    李纲, 郭仪, 曾小明, 等. 皮秒短脉冲光参量啁啾脉冲放大中泵浦信号高精度同步主动控制技术研究[J]. 物理学报, 2022, 71:074203 doi: 10.7498/aps.71.20211961

    Li Gang, Guo Yi, Zeng Xiaoming, et al. Investigation of active pump-signal synchronization technique for a ps-pulse pumped OPCPA[J]. Acta Physica Sinica, 2022, 71: 074203 doi: 10.7498/aps.71.20211961
    [18]
    杨帅帅, 滕浩, 何鹏, 等. 基于大基模体积的10 mJ飞秒钛宝石激光再生放大器[J]. 物理学报, 2017, 66:104209 doi: 10.7498/aps.66.104209

    Yang Shuaishuai, Teng Hao, He Peng, et al. 10 mJ femtosecond Ti: sapphire regenerative amplifier with large mode size[J]. Acta Physica Sinica, 2017, 66: 104209 doi: 10.7498/aps.66.104209
    [19]
    Aguergaray C, Schmidt O, Rothhardt J, et al. Ultra-wide parametric amplification at 800 nm toward octave spanning[J]. Optics Express, 2009, 17(7): 5153-5162. doi: 10.1364/OE.17.005153
    [20]
    Moses J, Manzoni C, Huang Shuwei, et al. Temporal optimization of ultrabroadband high-energy OPCPA[J]. Optics Express, 2009, 17(7): 5540-5555. doi: 10.1364/OE.17.005540
    [21]
    Bromage J, Rothhardt J, Hädrich S, et al. Analysis and suppression of parasitic processes in noncollinear optical parametric amplifiers[J]. Optics Express, 2011, 19(18): 16797-16808. doi: 10.1364/OE.19.016797
    [22]
    Ross I N, Matousek P, New G H C, et al. Analysis and optimization of optical parametric chirped pulse amplification[J]. Journal of the Optical Society of America B, 2002, 19(12): 2945-2956. doi: 10.1364/JOSAB.19.002945
    [23]
    Eimerl D, Davis L, Velsko S, et al. Optical, mechanical, and thermal properties of barium borate[J]. Journal of Applied Physics, 1987, 62(5): 1968-1983. doi: 10.1063/1.339536
    [24]
    Flemens N, Swenson N, Moses J. Efficient parametric amplification via simultaneous second harmonic generation[J]. Optics Express, 2021, 29(19): 30590-30609. doi: 10.1364/OE.437864
    [25]
    Fischer P, Muschet A, Lang T, et al. Saturation control of an optical parametric chirped-pulse amplifier[J]. Optics Express, 2021, 29(3): 4210-4218. doi: 10.1364/OE.415564
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (11) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return