Turn off MathJax
Article Contents
Guo Zhiming, Hao Jianhong, Zhang Fang, et al. Influence of bound nuclear effects on thermal neutron activation[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240408
Citation: Guo Zhiming, Hao Jianhong, Zhang Fang, et al. Influence of bound nuclear effects on thermal neutron activation[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240408

Influence of bound nuclear effects on thermal neutron activation

doi: 10.11884/HPLPB202537.240408
  • Received Date: 2024-11-30
  • Accepted Date: 2025-03-06
  • Rev Recd Date: 2025-03-19
  • Available Online: 2025-04-07
  • In a surface nuclear leakage scenario, radiation neutrons undergo multiple scatterings with atomic nuclei in the material, rapidly reducing their energy to the thermal neutron range (a few eV). The activation of thermal neutrons significantly impacts the nuclear reaction process. In solid and liquid materials, nuclei typically exist in bound states, differing from free nuclei in gaseous form regarding their interaction with matter. To accurately assess nuclear radiation effects, this study investigates the impact of bound-nucleus effects on thermal neutron activation. Using the Monte Carlo method for particle transport simulation, an air-ground interface model was developed based on surface nuclear radiation scenarios. The study modeled neutron beam interactions with soil, seawater, and concrete, focusing on thermal neutron activation reactions. By incorporating bound-nucleus effects through adjusted reaction cross-sections, the study calculated and compared changes in secondary gamma flux before and after considering these effects. The results show that accounting for bound-nucleus effects enhances thermal neutron activation in solid and liquid media, thereby increasing surface secondary gamma field intensity. Due to factors such as elemental composition and particle shielding, the maximum increases in secondary gamma flux were 18%, 8%, and 11% for the three media, with varying patterns of flux increase over detection distances.
  • loading
  • [1]
    Glasstone S, Dolan P J. The effects of nuclear weapons[M]. 3rd ed. Washington: Department of Defense & Department of Energy, 1977: 3-10.
    [2]
    刘晓红, 王伟力, 孟涛, 等. 早期核辐射毁伤效应空间建模及剖切算法[J]. 火力与指挥控制, 2012, 37(9):190-192,197

    Liu Xiaohong, Wang Weili, Meng Tao, et al. Research on 3D spatial data models for early nuclear radiation damage effects and slitting algorithm[J]. Fire Control & Command Control, 2012, 37(9): 190-192,197
    [3]
    Khasanov S, Yang Bo, Su Youwu, et al. Induced radioactivity at particle accelerators: a short review[J]. Radiation Detection Technology and Methods, 2021, 5(4): 481-492. doi: 10.1007/s41605-021-00292-3
    [4]
    王韬, 庞建, 赵良超, 等. 回旋加速器束测探头感生放射性实验研究[J]. 强激光与粒子束, 2013, 25(7):1779-1782

    Wang Tao, Pang Jian, Zhao Liangchao, et al. Experimental investigation on induced radioactivity in beam probe for compact cyclotron[J]. High Power Laser and Particle Beams, 2013, 25(7): 1779-1782
    [5]
    邹士亚, 张文仲, 毛用泽. 中子弹核爆炸战场目标毁伤效应数学模型[J]. 核电子学与探测技术, 2006, 26(2):132-136

    Zou Shiya, Zhang Wenzhong, Mao Yongze. The damage effect math-model of field objects for neutron bomb nuclear explosion[J]. Nuclear Electronics & Detection Technology, 2006, 26(2): 132-136
    [6]
    商鹏, 黄流兴, 牛胜利, 等. 核爆炸地面感生放射性辐射环境的蒙特卡罗模拟[J]. 现代应用物理, 2022, 13:010201

    Shang Peng, Huang Liuxing, Niu Shengli, et al. Monte Carlo simulation of ground environment of induced radioactivity radiation produced by neutrons of nuclear explosion[J]. Modern Applied Physics, 2022, 13: 010201
    [7]
    赵健. GTAF装置数字化数据获取系统的研究[D]. 衡阳: 南华大学, 2013: 1-8

    Zhao Jian. The study of digital data acquisition system on GTAF[D]. Hengyang: University of South China, 2013: 1-8
    [8]
    张奇玮, 贺国珠, 栾广源, 等. 基于HI-13串列加速器的中子俘获反应截面测量方法[J]. 强激光与粒子束, 2021, 33:046001

    Zhang Qiwei, He Guozhu, Luan Guangyuan, et al. Cross section measurement of neutron capture reaction based on HI-13 tandem accelerator[J]. High Power Laser and Particle Beams, 2021, 33: 046001
    [9]
    陈朝斌, 陈义学, 胡泽华, 等. MCNP程序用热中子散射数据制作和检验[J]. 原子能科学技术, 2010, 44(11):1335-1340

    Chen Chaobin, Chen Yixue, Hu Zehua, et al. Generating and validation of thermal neutron scattering library for MCNP[J]. Atomic Energy Science and Technology, 2010, 44(11): 1335-1340
    [10]
    姚永刚, 肖才锦, 王平生, 等. 嫦娥五号月壤中子活化分析研究[J]. 同位素, 2022, 35(1):70-74

    Yao Yonggang, Xiao Caijin, Wang Pingsheng, et al. Instrumental neutron activation analysis for lunar samples returned by Chang'E-5[J]. Journal of Isotopes, 2022, 35(1): 70-74
    [11]
    Massoud A, Abdou F S, Yousif M. Evaluation of mineral compositions of surface and subsurface rock samples by neutron activation analysis[J]. International Journal of Environmental Analytical Chemistry, 2023, 103(3): 528-545.
    [12]
    王兴华, 孙洪超, 姚永刚, 等. PGNAA方法学的发展与现状[J]. 同位素, 2014, 27(4):251-256

    Wang Xinghua, Sun Hongchao, Yao Yonggang, et al. Development and status of Prompt Gamma Neutron Activation Analysis technique methodology[J]. Journal of Isotopes, 2014, 27(4): 251-256
    [13]
    耿书群. 基于热中子的瞬发伽马射线活化成像技术的模拟研究[D]. 南京: 南京航空航天大学, 2018: 13-14

    Geng Shuqun. Simulation study of prompt gamma activation imaging technology based on the thermal neutron[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 13-14
    [14]
    Younous K, El Kafhali M, Bouadel I, et al. Efficacy and safety of boron neutron capture therapy: a systematic review[J]. International Journal of Radiation Biology, 2024, 100(12): 1611-1621. doi: 10.1080/09553002.2024.2413583
    [15]
    Goorley J T, Kiger III W S, Zamenhof R G. Reference dosimetry calculations for neutron capture therapy with comparison of analytical and voxel models[J]. Medical Physics, 2002, 29(2): 145-156. doi: 10.1118/1.1428758
    [16]
    王武, 夏虹, 李伟, 等. 基于MCNP的反应堆建模方法[J]. 应用科技, 2021, 48(4):92-97

    Wang Wu, Xia Hong, Li Wei, et al. Reactor physical modeling method based on MCNP[J]. Applied Science and Technology, 2021, 48(4): 92-97
    [17]
    钟兆鹏, 施工, 胡永明. MCNP程序在反应堆临界计算中的应用[J]. 核动力工程, 2003, 24(1):8-11

    Zhong Zhaopeng, Shi Gong, Hu Yongming. Application of MCNP in the criticality calculation for reactors[J]. Nuclear Power Engineering, 2003, 24(1): 8-11
    [18]
    National Nuclear Data Center. Evaluated nuclear data file (ENDF)[EB/OL]. Brookhaven National Laboratory. (2024-08-30). https://www.nndc.bnl.gov/endf/.
    [19]
    邱有恒, 邓力, 李百文, 等. 几种重要性函数在粒子输运蒙特卡罗模拟中的应用[J]. 原子能科学技术, 2013, 47(s1):673-677

    Qiu Youheng, Deng Li, Li Baiwen, et al. Application of several important functions on Monte Carlo simulation of particle transport[J]. Atomic Energy Science and Technology, 2013, 47(s1): 673-677
    [20]
    郭思禹, 程引会, 郭俊. 无风条件下近地爆烟尘的大气γ电离辐射环境模拟[J]. 强激光与粒子束, 2024, 36:043027

    Guo Siyu, Cheng Yinhui, Guo Jun. Simulation of atmospheric γ ionizing radiation environment of near-ground nuclear explosion fallout under windless conditions[J]. High Power Laser and Particle Beams, 2024, 36: 043027
    [21]
    Holmes R L, White S W. Standardized unclassified little boy and fat man outputs[R]. Defense Threat Reduction Agency, 2013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article views (46) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return