Turn off MathJax
Article Contents
Zhang Yang, Li Xiangqiang, Zhang Jianqiong, et al. Design of X-band high power wide tuning bandwidth electronically beam scanning reflectarray antenna based on varactor[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240411
Citation: Zhang Yang, Li Xiangqiang, Zhang Jianqiong, et al. Design of X-band high power wide tuning bandwidth electronically beam scanning reflectarray antenna based on varactor[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240411

Design of X-band high power wide tuning bandwidth electronically beam scanning reflectarray antenna based on varactor

doi: 10.11884/HPLPB202537.240411
  • Received Date: 2024-12-03
  • Accepted Date: 2025-03-22
  • Rev Recd Date: 2025-02-19
  • Available Online: 2025-04-16
  • To address the wideband and beam scanning requirements of high-power microwave (HPM) systems, this paper proposes an X-band varactor-based high-power wideband beam-scanning reflectarray antenna. The antenna employs a linearly polarized horn feed and a sandwich-structured embedded patch element, where the nested dual-resonance structure integrated with varactors simultaneously extends the phase tuning range (360°) and operational bandwidth. By eliminating abrupt structural discontinuities and adopting a sandwich dielectric configuration, the design effectively suppresses triple-junction formation, achieving a power capacity of 5 MW in 1 atm SF6 environment. Varactor capacitance adjustment enables a 12% relative tuning bandwidth within 8.55-9.65 GHz. Simulations of an 11×11 rectangular grid reflectarray demonstrate: a maximum gain of 25.12 dBi with 54.39% aperture efficiency for a 242-mm aperture, and full-band 0°~20° beam scanning capability. Compared with existing technologies, this design exhibits superior tuning bandwidth (12%) and power capacity (5 MW), providing an effective solution for wideband beam control in HPM systems.
  • loading
  • [1]
    Courtney C C, Baum C E. The coaxial beamrotating antenna (COBRA): theory of operation and measured performance[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(2): 299-309. doi: 10.1109/8.833080
    [2]
    Eisenhart R L. A novel wideband TM01-TE11 mode converter[J]. IEEE Transactions on Microwave Theory and Techniques, 1988, 1(11): 249-252.
    [3]
    Vlasov S N, Orlova l M. Quasioptical transformer which transforms the waves in a waveguide having a circular cross section into a highly directional wave beam[J]. Radiophysics and Quantum Electronics, 1974, 17(1): 115-119. doi: 10.1007/BF01037072
    [4]
    赵旭浩, 毕绍锋, 张建德, 等. 伸缩式全金属反射阵列扫描天线[J]. 强激光与粒子束, 2022, 34:043004

    Zhao Xuhao, Bi Shaofeng, Zhang Jiande, et al. Scalable all-metal reflective array beam scanning antenna[J]. High Power Laser and Particle Beams, 2022, 34: 043004
    [5]
    Campbell S D, Mackertich-Sengerdy G, Daniel Binion J, et al. Metamaterial-enabled reflectarray antennas for high-power microwave applications[C]//Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting. 2020: 651-652.
    [6]
    Liang Yuan, Zhang Jianqiong, Liu Qingxiang, et al. High-power radial-line helical subarray for high-frequency applications[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(8): 4034-4041. doi: 10.1109/TAP.2018.2840840
    [7]
    许亮, 张强, 袁成卫, 等. 一种旋转移相式高功率微波反射阵列天线[J]. 强激光与粒子束, 2024, 36:013002 doi: 10.11884/HPLPB202436.230379

    Xu Liang, Zhang Qiang, Yuan Chengwei, et al. A high-power microwave reflectarray antenna based on variable rotation technique[J]. High Power Laser and Particle Beams, 2024, 36: 013002 doi: 10.11884/HPLPB202436.230379
    [8]
    张治强, 赵加宁, 李芳, 等. 宽带Ka波段平面反射阵列天线设计[J]. 强激光与粒子束, 2022, 34:083001 doi: 10.11884/HPLPB202234.220037

    Zhang Zhiqiang, Zhao Jianing, Li Fang, et al. Design of a broadband Ka-band reflectarray antenna[J]. High Power Laser and Particle Beams, 2022, 34: 083001 doi: 10.11884/HPLPB202234.220037
    [9]
    Guo Letian, Huang Wenhua, Chang Chao, et al. Studies of a leaky-wave phased array antenna for high-power microwave applications[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 2366-2375. doi: 10.1109/TPS.2016.2601105
    [10]
    Zhao Xuelong, Yuan Chengwei, Liu Lie, et al. All-metal beam steering lens antenna for high power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 7340-7344.
    [11]
    Bi Shaofeng, Xu Liang, Cheng Xiaoyu, et al. An all-metal, simple-structured reflectarray antenna with 2-D beam-steerable capability[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(1): 129-133. doi: 10.1109/LAWP.2022.3204617
    [12]
    Hum S V, Perruisseau-Carrier J. Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: a review[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(1): 183-198. doi: 10.1109/TAP.2013.2287296
    [13]
    Nayeri P, Yang F, Elsherbeni A Z. Beam-scanning reflectarray antennas: a technical overview and state of the art[J]. IEEE Antennas and Propagation Magazine, 2015, 57(4): 32-47. doi: 10.1109/MAP.2015.2453883
    [14]
    Perez-Palomino G, Barba M, Encinar J A, et al. Design and demonstration of an electronically scanned reflectarray antenna at 100 GHz using multiresonant cells based on liquid crystals[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(8): 3722-3727. doi: 10.1109/TAP.2015.2434421
    [15]
    Yang Jun, Chu Xiujun, Gao Haoyu, et al. Fully electronically phase modulation of millimeter-wave via comb electrodes and liquid crystal[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(3): 342-345. doi: 10.1109/LAWP.2021.3049870
    [16]
    Yang Xue, Xu Shenheng, Yang Fan, et al. A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(8): 3959-3966. doi: 10.1109/TAP.2017.2708079
    [17]
    Perruisseau-Carrier J, Skrivervik A K. Monolithic MEMS-based reflectarray cell digitally reconfigurable over a 360° phase range[J]. IEEE Antennas and Wireless Propagation Letters, 2008, 7: 138-141. doi: 10.1109/LAWP.2008.919327
    [18]
    Carrasco E, Barba M, Encinar J A. X-band reflectarray antenna with switching-beam using PIN diodes and gathered elements[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(12): 5700-5708. doi: 10.1109/TAP.2012.2208612
    [19]
    Costanzo S, Venneri F, Raffo A, et al. Dual-layer single-varactor driven reflectarray cell for broad-band beam-steering and frequency tunable applications[J]. IEEE Access, 2018, 6: 71793-71800. doi: 10.1109/ACCESS.2018.2882093
    [20]
    Kamoda H, Iwasaki T, Tsumochi J, et al. 60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(7): 2524-2531. doi: 10.1109/TAP.2011.2152338
    [21]
    Liu Chang, Hum S V. An electronically tunable single-layer reflectarray antenna element with improved bandwidth[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 1241-1244. doi: 10.1109/LAWP.2011.2104934
    [22]
    Trampler M E, Gong Xu. Phase-agile dual-resonance single linearly polarized antenna element for reconfigurable reflectarray applications[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(6): 3752-3761. doi: 10.1109/TAP.2019.2908041
    [23]
    Trampler M E, Lovato R E, Gong Xu. Dual-resonance continuously beam-scanning X-band reflectarray antenna[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(8): 6080-6087. doi: 10.1109/TAP.2020.2989559
    [24]
    Li Xiangqiang, Zhou Zhe, Wang Qingfeng, et al. A polarization conversion radome for high-power microwave applications[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(6): 1096-1099. doi: 10.1109/LAWP.2019.2909062
    [25]
    Gregory M D, Bossard J A, Morgan Z C P O, et al. A low cost and highly efficient metamaterial reflector antenna[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(3): 1545-1548. doi: 10.1109/TAP.2017.2781151
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article views (35) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return